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We explore the problem of computationally generating special images that produce multi-arrangement optical illusions when physically arranged and viewed
in a certain way, which we call ‘prime’ images. First, we propose a formal definition for this problem. Next, we introduce Diffusion Illusions, the first
comprehensive pipeline designed to automatically generate a wide range of these multi-arrangement illusions. Specifically, we both adapt the existing ‘score
distillation loss’ and propose a new ‘dream target loss’ to optimize a group of differentially parametrized prime images, using a frozen text-to-image diffusion
model. We study three types of illusions, each where the prime images are arranged in different ways and optimized using the aforementioned losses such that
images derived from them align with user-chosen text prompts or images. We conduct comprehensive experiments on these illusions and verify the
effectiveness of our proposed method qualitatively and quantitatively. Additionally, we showcase the successful physical fabrication of our illusions — as they
are all designed to work in the real world. Our code and examples are publicly available at our interactive project website: https://diffusionillusion.github.io/
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Fig. 1. Diffusion Illusions are a new class of automatically generated optical illusions. The images on top demonstrate the three major types of illusions we
discuss in this paper: Flip Illusions, Rotation Overlay Illusions, and Hidden Overlay Illusions. (Terminology is formally defined in Section 2). The bottom
showcases an example of Hidden Overlay Illusions: four images (prime images 𝑝1...4) that when stacked on top of each other (arrangement) reveal a new fifth
image (derived image 𝑑5). Please note that these illustrations are all photographs of the generated images physically fabricated in the real world.
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1 Introduction
An image that is viewed right-side up appears to be an ordinary

photo of a dog but viewed upside-down looks like a sloth. Four
images, each showing an everyday playground, when superimposed
form a QR code (see Fig. 1). These types of images that cause il-
lusions have long required immense time and skill to create, but
we have developed a general pipeline capable of generating ap-
pealing illusions automatically. More specifically, given a frozen
text-to-image diffusion model, we adapt existing score distillation
loss and propose a new dream target loss to optimize a group of
prime images differentiably parametrized by fourier feature net-
works. Eventually, the images are optimized to comply with the
textual and/or image prompts given by the user to trigger illusions
in a certain arrangement.
Generating such images is not the sole domain of play. These

multi-arrangement illusions – that is, visual stimuli whose interpre-
tation depends on how they are arranged and viewed – have been
created and studied for centuries. While they are an appealing sort
of “visual puzzle”, they also reveal much about how humans perceive
the world and about the abstract structure of images. Even though
illusions have been created and studied for centuries, and certain
types have been generated by computers for decades, photorealistic
illusions have remained largely out of reach until the very recent
past, and until this point, there has been no general framework for
understanding and generating such illusions.
1.1 Contributions

In this paper, we present the first formalized, generic framework
for creating such illusions. We name our framework Diffusion Illu-
sions. Our major contributions can be summarized as follows:

(1) We provide the a formal definition for the problem of gener-
ating these multi-arrangement illusions;

(2) We present Diffusion Illusions, a flexible tool for generating
multiple types of illusions;

(3) We assess the quality of computer-generated illusions in mul-
tiple aspects and conduct computational comprehensive ex-
periments to validate the effectiveness of our method;

(4) We successfully fabricate the generated images and their cor-
responding illusions in the real world.

1.2 Related Work: History of Illusions
1.2.1 Classical illusions Images whose interpretation depends
on viewing angle or category bias, sometimes known as ambiguous
images, have been designed for centuries. Such images have drawn
the scholarly interest of psychologists [Boring 1930; Jastrow 1899]
and philosophers [Wittgenstein 1953] since the 1800s. Ambiguous
images have been used experimentally to understand how category
bias during perception varies as people age [Nicholls et al. 2018],
and families of ambiguous images, such as ambigrams [Hofstadter
1985], are often constructed as a way of better understanding the
domains they belong to. We present some relevant examples of
classical illusions in Figure 2.
1.2.2 Computationally-generated illusions A growing stream of
research has focused on computationally generating specific types
of illusions. One early example is hybrid images [Oliva et al. 2006].
Hybrid images are created from two images by combining the low-
frequency features of one with the high-frequency features of the

Fig. 2. A brief history of illusions. Classical illusions: (A) “Fruit Basket”
(1500s) by Giuseppe Arcimboldo provides a very early example, depicting
a face when viewed in one orientation and a fruit basket when viewed
in the other. (B) When viewed directly, “Kaninchen und Ente” (1892) is
ambiguous; 45◦ rotations make it appear as a rabbit or a duck [Jastrow
1899; Wittgenstein 1953]. (C) “My Wife and My Mother-in-Law” (1915) by
William Ely Hill may be interpreted as showing either a young or an old
woman depending on how it is grouped [Boring 1930; Nicholls et al. 2018].
Computationally-generated illusions: (D) A hybrid image which appears
as a leopard when viewed close-up and an elephant when viewed from afar
[Oliva et al. 2006]. (E) A wire sculpture depicting three 2010s American
politicians when viewed from different angles [Hsiao et al. 2018].Diffusion-
based illusions: (F) A duck when viewed upright and a rabbit when rotated
90◦ ccw [Tancik 2023]. (G, H, I) ambigrams depicting ‘Ohio cloud yeah
python’ [Samsudin 2023], ‘G‘ and ‘Q‘ [Loviscach 2010] and ‘Beauty’ [Zhao
et al. 2023] respectively. (J) A giraffe when viewed upright and a penguin
when viewed upside-down [Geng et al. 2023]. (K) A tiger camouflaged into
a cliff [Chu et al. 2010] (L) The only overlay illusion example in Nakajima
and Yamaguchi [2004], featuring grainy pixel-wise variation (M) A mask
whose facial expression changes when lit differently [Chandra et al. 2022]

other. Viewers see the object from the low-frequency image when
viewing the hybrid image from a distance, and see the object from
the high-frequency image when viewing up-close. While this pro-
cess may be automated, the authors note that for best results, the
overall shapes of the low-frequency and high-frequency images
should be manually aligned.

An related type of illusion is steganography, in which apparently
normal objects may be viewed in a particular way to uncover a
hidden meaning. In The Magic Lens [Papas et al. 2012], seemingly
meaningless dots are generated such that, when viewed through an
intricate refractive lens, they will comprise a specified image. [2010]
camouflages one image into another by imitating its texture. [2013]
makes a small change to an image that’s hard to spot, but easily
pointed out.

A number of researchers have created 3-dimensional objects that
are interpreted as different objects when they are viewed from
different angles. In multi-view wire art [Hsiao et al. 2018], a single
3D wire may be viewed or lit frommultiple angles to obtain different
clean line drawings; and in view-dependent surfaces [Perroni-Scharf
and Rusinkiewicz 2023], a colored 3D-printed height field may be
viewed from different angles to obtain different colored images.
Chandra et al. [2022] creates models are perceived differently when
relit, seen in 2.
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Other types of illusion-generation have been also explored, such
as auditory illusions [Chandra et al. 2021], still images that ap-
pear to move [Chi et al. 2008], the creation of impossible-geometry
images from 3d models [Owada and Fujiki 2008]. Nakajima and
Yamaguchi [2004] generates illusions that have a similar physi-
cal analogy to our Hidden Overlay illusions - involving stacked
transparent sheets (see Fig. 2). Their paper did not showcase any
photographs of their illusions working physically, and is limited to
two transparencies.
1.2.3 Diffusion-based ImageGeneration DenoisingDiffusion Prob-
abilistic Models [Ho et al. 2020] are a class of generative models that
resulted in rapid advances for image generation tasks, including
text-to-image [Dhariwal and Nichol 2021; Nichol et al. 2022; Ramesh
et al. 2022, 2021; Saharia et al. 2021a, 2022, 2021b; Yu et al. 2022] and
robotics [Chi et al. 2023; Li et al. 2023; Zhu et al. 2023].

In this formulation, samples are generated via a reverse-diffusion
process, where a denoising U-NetF𝑢 iteratively denoises pure Gauss-
ian noise to clean images. These models are often conditioned on
text for controlability. We use latent diffusion models [Rombach
et al. 2022][Podell et al. 2023], which denoise in latent space instead
of image space, using an an auto-encoder F𝑒 to decode the clean
result into a high resolution image.

Recent works [Burgert et al. 2022a; Poole et al. 2022] sample pre-
trained diffusion models without re-training to generate outputs in
novel domains. Score Distillation introduced in DreamFusion [Poole
et al. 2022] is the underlying technique enabling optimization of
samples in any arbitrary parameter space without backpropaga-
tion through the diffusion model. We utilize these techniques to
construct a novel framework for illusion generation. These rapid
advances have led to an exploration of suitable evaluation metrics,
both quantitative and qualitative [Benny et al. 2020; Betzalel et al.
2022; Friedman and Dieng 2022; Lee et al. 2023b; Yeh et al. 2023],
which we use to evaluate our proposed framework.
1.2.4 Contemporary Work Following recent image generation
developments, a small but growing body of non-scholarly or unpub-
lished work has approached the problem of generating multi-view
2D images [Tancik 2023] or textual ambigrams [Loviscach 2010;
Samsudin 2023; Shirakawa and Uchida 2023; Zhao et al. 2023].
We presented a preliminary demo of our work at CVPR 2023

[Burgert et al. 2023]. Since then, Visual Anagrams [Geng et al. 2023]
presented a formal framework for illusion generation. As explicitly
stated in their paper, they operate on a subset of Diffusion Illusions
(namely, those with a single “prime image” in our terminology).
Their work is restricted to orthogonal transformations (i.e. flip il-
lusions, breaking the prime into shuffled puzzle pieces, or image
inverting) and cannot be used to generate the overlay illusions
shown in this paper. Yet, their more restricted approach runs much
faster than ours, requiring only a single diffusion pass.
Following recent image generation developments, a small but

growing body of non-scholarly or unpublishedwork has approached
the problem of generating multi-view 2D images [Tancik 2023] or
textual ambigrams [Samsudin 2023][Zhao et al. 2023][Shirakawa
and Uchida 2023][Loviscach 2010]. A preliminary version of our
Diffusion Illusions project was shown at CVPR2023 as a demo [Burg-
ert et al. 2023]. Since then, we have developed the formal, generic
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Fig. 3. Architecture overview. Trainable components are shown in blue,
intermediate variables are in red, non-trainable functions are in white, and
inputs are in green. A diffusion network provides two different loss signals
pulling the derived images towards the text prompts. Only a single loss
signal, either Score Distillation Loss or Dream Target Loss, is computed at
each training step. Gradients on the derived images are backpropagated
through the arrangement operations and prime images to the parameters
of the Fourier Feature Networks. No backpropagation occurs through the
diffusion network.

approach described in this paper. Also following and building on
Burgert et al. [2023], Visual Anagrams [Geng et al. 2023] presents
a formal framework for illusion generation. As explicitly stated in
Geng et al. [2023], they operate subset of Diffusion Illusions (namely,
those with a single “prime image” in our terminology). It is restricted
to orthogonal transformations (i.e. flip illusions, breaking the prime
into shuffled puzzle pieces, or image inverting) - and cannot be
used to generate the overlay illusions shown in this paper. Geng
et al. [2023] also runs much faster than our Diffusion Illusions -
requiring only a single diffusion pass.

2 Problem Statement
A unifying pattern behind many types of ambiguous images

or illusions is the situation where a single set of stimuli may be
interpreted in multiple ways depending on how they are viewed. We
leverage this pattern to define a quite general class of computational
problems which we will use to represent the generation of illusions.
We consider the situation that occurs when a set of physical images
called prime images 𝑝 are viewed or arranged in multiple ways, with
each arrangement yielding a unique perceived image, referred to as
a derived image 𝑑 , that represents a specific object or scene.

Most existing illusions we discussed consist of a single 2D image
or 3D object as a prime image, with the arrangements being simple
translations and rotations of the prime image in 2D or 3D space. In
the simplest case where a 2D drawing is rotated to yield different
perceived objects, the arrangement operations may be modeled as
simple rotations. The near and distant views composing the Hybrid
Images illusion [Oliva et al. 2006], on the other hand, might be best
modeled by high-pass and low-pass spatial frequency filters.

In an effort to find a general definition of our multi-arrangement
illusions and leverage the new possibilities afforded by text-to-image
models, we do not limit ourselves to a single prime image. We
additionally consider situations where multiple composable prime
images, for instance, stencils or light-filtering transparencies, may
be arranged in different ways to yield different derived images. In
the particular case of composing two light-filtering transparencies,
the arrangement operation may be modeled as a rotation of each
prime image followed by multiplication to model light-filtering.
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Formally, the illusion process is described as follows. Consider
a prime image space P representing physically realizable visual
stimuli, and a derived image space D representing a human view
of a scene. (Practically, we use 2D RGB images to represent both
spaces.) Then, an illusion consists of a tuple of 𝑛 prime images
{𝑝1, 𝑝2, . . . , 𝑝𝑛}, 𝑝𝑖 ∈ P and a tuple of𝑚 arrangement operations
𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚}, 𝑎 𝑗 : P𝑛 → D. Each 𝑎 𝑗 represents an ar-
rangement of all of the prime images to obtain a single derived
image 𝑑 𝑗 , such that the illusion yields a tuple of𝑚 derived images
{𝑑1, 𝑑2, . . . , 𝑑𝑚}, 𝑑 𝑗 ∈ D. (This articulation may be easily general-
ized to heterogeneous illusions, such as wireframes viewed through
stencils; where each 𝑝𝑖 belongs to its own prime image space P𝑖 .)

This framing is complementary to existing literature on “ambigu-
ous images”. The illusion process is not intended to cover images
that have multiple interpretations when viewed in exactly the same
way, though it may be possible to articulate a perceptual bias to-
wards a certain category as a type of arrangement. However, the
illusion process otherwise broadens the category to include situ-
ations involving multiple composed images. We propose multiple
examples below that are to our knowledge wholly novel.
This definition allows one to separate the process of creating

an illusion into two steps: first, selecting a prime image domain
and defining and modeling the arrangement operation; and second,
searching the prime image domain for images that yield the desired
derived images when arranged in each way. While the first step
requires creativity and experimentation, the second is concrete and
may be practically automated, as discussed in Section 3.

3 Method
We introduce Diffusion Illusions, a flexible tool for generating

multiple types of visual illusions that can be styled with unprece-
dented control (e.g. photorealistic images, artistic styles, or even
arbitrary information such as QR codes). At a high level, the Diffu-
sion Illusions pipeline consists of

• a set of prime images parameterized by 𝜃 (P),
• a set of specific arrangement processes (𝐴, that derive images
from all primes),

• a frozen text-to-image diffusion model (F )
We refer to the outputs of the arrangement processes as derived
images (𝐷). The diffusion model is used to provide a signal using
one of two mechanisms (Score Distillation Loss or Dream Target Loss,
which will be covered in Section 3.3) to suitably optimize the prime
images, which in turn modifies the derived images. Our overall
pipeline is illustrated in Fig. 3.
3.1 Prime Images
As described in Section 2, prime images are the physical images

we eventually want to generate, that will trigger an illusion when
viewed or arranged in multiple ways.

In our framework, prime images are represented as 512 × 512
dimensional RGB images, meaning that P ≃ R(512,512,3) . Instead of
direct pixel-space image representation, we use Fourier Features
Networks (FFN) [Tancik et al. 2020] to represent prime images in
parametric form. For each prime image, the learnable weights of
a single MLP network act as its representation. The MLP network

maps image-space coordinates to corresponding RGB values similar
to [Burgert et al. 2022b], forming an implicit image representation.
3.2 Arrangement Processes
The purpose of arrangement processes, 𝐴, is to operate on a set

of prime images (including single element sets) and produce unique
outputs, the derived images. For a single arrangement process 𝑎𝑖 ,

𝑑𝑖 = 𝑎𝑖 (𝑃) (1)

each unique sequence of prime images produces a distinct derived
image, 𝑑𝑖 . Each operation 𝑎𝑖 ∈ 𝐴 should possess three properties: 1)
For the same set of inputs the operation should always provide the
same output (fixed operation). 2) 𝑎𝑖 should also be differentiable,
i.e., the possibility to explicitly calculate gradients propagation from
output to input through the operation. 3) 𝑎𝑖 should also be realizable
in the real world: some series of physical actions on prime images
(in physical form) should result in the same derived image. To sum-
marize, an arrangement process must be fixed, differentiable, and
realizable in the real world.
We select three illusion categories for further study:

• Flip Illusion is one of the most classical types of illusions. We
define this illusion as consisting of a single 2D prime image,
which is interpreted as some object when viewed upright (the
first derived image 𝑑1) and as another object when viewed
upside-down (the second derived image 𝑑2). Plesae see Fig. 7.

• Rotation Overlay Illusion is a type of illusion involving
multiple prime images. This illusion is based on two square
light-filtering 2D prime images, one base and one rotator. The
rotator image is rotated by 0, 90, 180, and 270 degree angles
and superimposed on the base image; each rotation yields a
derived image interpreted as a different object (see Fig. 8).

• Hidden Overlay Illusion is introduced to push the bound-
aries of the prime-to-derived relationship, in which four light-
filtering prime images, each of which is interpretable on its
own, may be merged to obtain a fifth hidden image. Here the
modeled view process for the first four derived images is sim-
ply the identity function; the view process for the fifth is the
product of the four prime images (see Fig. 9).

We select these illusion styles to cover varying set cardinalities
for prime images and arrangement processes. The arrangement
process relevant to each illusion is presented in Table 1. We also
present photographs of real-world fabrications for each illusion type
in Fig. 1, Fig. 8 and Fig. 9.
3.3 Diffusion Illusion Optimization

Having selected three diverse illusion styles, we next discuss the
process for learning optimal prime images. Given fully-differentiable
operations (also realizable in the physical world) that arrange a
set of prime images to produce a derived image, we leverage two
types of losses in successive phases to provide suitable alignment
signals to the derived images, which in turn would update the prime
images. In the first phase, we use between 500 and 4000 steps of Score
Distillation Loss [Poole et al. 2022], a high-fidelity but expensive
algorithm that applies a conditional denoising model to the input at
every image update step with a learning rate of 10−3. In the second
phase, we use between 8 and 20 steps of our Dream Target Loss, a
faster technique that pulls the derived images towards periodically
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Illusion 𝑛 𝑚 a

Flip 1 2 𝑎1 (p) = 𝑝1
𝑎2 (p) = rot(𝑝2, 180)

Rotation Overlay 2 4 𝑎 𝑗 (p) = 𝑝1 ∗ rot(𝑝2, 90𝑗 )

Hidden Overlay 4 5 𝑎 𝑗 (p) = 𝑝 𝑗 , 𝑗 ≤ 4
𝑎5 (p) = 𝑝1 ∗ 𝑝2 ∗ 𝑝3 ∗ 𝑝4

Table 1. This table describes our mathematical models of the Flip, Rotation
Overlay, and Hidden Overlay illusions, describing the number of prime
images 𝑛, the number of derived images𝑚, and the arrangement opera-
tor a mapping from prime image space P𝑛 to derived image space D𝑚 .
The arrangements in the Flip illusion are simply the identity and a 180
degree rotation. The arrangement operations in the Overlay illusions use
a multiplication blend operation to model shining light through multiple
transparencies; the result is multiplied by a constant and normalized using
tanh to avoid losing dynamic range.

updated target images. The exact numbers of steps are variable and
specified in Table 2.
Our algorithm is built on latent diffusion models, covered in

Section 1.2.3. Given a frozen text-to-image latent diffusion model
F [Rombach et al. 2022] which contains a text encoder F𝑡 , an image
encoder F𝑒 and the denoising network F𝑢 , we initialize a series of
prime images 𝑝𝑖 each represented by a Fourier Feature Network
with random parameters 𝜃𝑖 . Derived images𝑑𝑖 then can be presented
by the arrangement process as introduced in Section 3.2. For each
derived image 𝑑𝑖 , a target 𝑡𝑖 that describes in natural language the
expected visual appearance of its final form is given by the user.
3.3.1 Score Distillation Loss Score Distillation Loss (LSD) is a
widely-used technique to align images with external conditioning
such as textual prompts. In essence, SDL (LSD) randomly selects
a timestep 𝜏 of the denoising process, adds noise 𝜂𝜏 proportionate
to the timestep 𝜏 to a derived image 𝑑𝑖 and applies the denoising
process, which is conditioned on corresponding 𝑡𝑖 , to𝑑𝑖+𝜂𝜏 to obtain
an estimated noise 𝜂𝜏 . The difference, which we implement as a
mean absolute error, between the estimated noise𝜂𝜏 and actual noise
𝜂𝜏 provides a signal for the discrepancy between the derived image
𝑑𝑖 and the target description 𝑡𝑖 for the derived image. This difference
is normalized by 𝜏 and then provided as a gradient to the derived
image and backpropagated through the arrangement process to
the prime image. Importantly, this process does not require any
backpropagation through the diffusion model.
As shown in Eq. (3), score distillation loss provides gradients to

optimize the image parameterized by 𝜃 , such that iterative updates
to the image converge its appearance towards the paired text 𝑡𝑖 .

𝜂𝜏 = F𝑢 (𝑑𝑖 + 𝜂𝜏 , 𝜏, F𝑡 (𝑡𝑖 )) (2)

LSD
𝑖 (𝑡𝑖 , 𝑑𝑖 ) = ∥𝜂𝜏 − 𝜂𝜏 ∥1 (3)

3.3.2 Dream Target Loss is a novel alternative to Score Distilla-
tion Loss, producing higher fidelity illusions in less iterations. Please
see Fig. 11 to how it reduces score distillation loss’s artifacts.
Dream Target Loss (LDT) first applies a conditional image-to-

image process 𝑧𝑖 = G(𝑡𝑖 , 𝑑𝑖 ) to obtain a target image 𝑧𝑖 for each
derived image 𝑑𝑖 , conditioned on the textual prompt 𝑡𝑖 . Then we
gradually pull each derived image 𝑑𝑖 towards its target image 𝑧𝑖
using a combination of the structural image similarity loss (L𝑆𝑆𝐼𝑀 )
and a pixel-wise mean squared error loss (L2). Therein, we obtain

a joint loss to similarly learn optimal prime images 𝑝𝑖 resulting in
derived images aligned to each of our target concepts.

𝑧𝑖 = G(𝑡𝑖 , 𝑑𝑖 ) (4)

LDT
𝑖 (𝑧𝑖 , 𝑑𝑖 ) = LSSIM (𝑧𝑖 , 𝑑𝑖 ) + L2 (𝑧𝑖 , 𝑑𝑖 ) (5)

Dream Target Loss produces less noise-like encoder artifacts than
using score distillation loss alone (see Fig. 11). The total dream target
loss is a weighted average across all per derived image loss terms.

LDT =
∑︁

𝑤𝑖LDT
𝑖 (6)

where the loss terms are weighted by importance values𝑤1...𝑚 . By
default, all𝑤𝑖 = 1 except in the hidden overlay illusion where the
hidden image is prioritized via𝑤5 = 3 to increase its fidelity.
In practice, for each target image, we optimize the prime image

for multiple steps using the dream target loss with a learning rate of
10−2. Then we repeat the process with the latest prime image so that
the target image is updated towards the current derived image for
faster convergence (Illustrated in Fig. 10). We implement G using
SDEdit [Meng et al. 2022] where random noise is first added to the
input image, and is then iteratively denoised conditioned on the text
prompt using a frozen diffusion model to generate an output image.
The strength of SDEdit is decreased according to a linear schedule
in each dream-target-loss step, allowing it to converge faster. Please
see our appendix for detailed pseudocode.

Note that in both Score Distillation Loss and Dream Target Loss,
we propagate gradients to the prime images, updating their para-
metric representation (i.e. the weights of the MLP Fourier Feature
Networks 𝜃 ), and the diffusion model is kept frozen.
3.3.3 Visual Prompt Optionally, one or more 𝑡𝑖 can be a specific
target image instead of a text prompt — letting users hide targets
such as QR codes or blocks of text. In that case, for both phases,
the discrepancy between the derived image and the target image is
measured using Eq. (5), providing gradients for the prime images.
3.4 Fabrication
The flip illusions are trivial to manufacture in real life and need

only a printer. The hidden overlay and rotation overlay illusions are
created by printing their prime images on overhead display sheets
on a color laser printer, before being laminated to protect them from
scratches. With a strong enough backlight, the hidden overlays and
rotation overlay illusions can be performed on regular pieces of
paper as well. Please refer to Appendix D for more details.

4 Experiments
In this section, we evaluate our framework presenting qualitative

visualizations and quantitative metrics.
4.1 Qualitative Evaluation

We illustrate randomly selected example outputs of our Diffusion
Illusions framework. Visualizations for our three selected illusion
styles, Flip Illusion, Rotation Overlay Illusion, and Hidden Overlay
Illusion are presented in Fig. 7, Fig. 15, and Fig. 14 respectively.
For more interactive examples, please refer to the project website
https://diffusionillusion.github.io/
4.2 Quantitative Evaluation

Next, we quantitatively benchmark the Hidden Overlay Illusion
generated by the variants of Diffusion Illusion in multiple aspects
and demonstrate the generalization ability and robustness of the
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proposed framework. Please check Appendix C as well for other
illusions and more details.
Image Generation Protocol We design a pipeline that con-
structs diverse textual prompts randomly and automatically. The
pipeline relies on two sets of textual prompts. The first set 𝑇 𝑠 is of
sentences where each sentence describes a unique art style of an
image and contains one subject token representing the potential
subject of the sentence. The second set 𝑇𝑜 is of different subjects
like ‘dog’, ‘cat’, ‘car’, and so on. When generating images with a
specific style 𝑡𝑠 ∈ 𝑇 𝑠 , we uniformly sample five unique subjects 𝑡𝑜

𝑖
where 𝑖 ∈ {1, . . . , 5} from 𝑇𝑜 . Then we substitute the subject token
in 𝑡𝑠 with 𝑡𝑜

𝑖
to construct the textual prompt 𝑡𝑖 . Finally, 𝑡1, . . . , 𝑡5 is

used to guide the generation of derived images.
For a full evaluation, the whole pipeline is repeated for 𝑁 times

per style 𝑡𝑠 to generate 𝑁 groups of illusion images. In practice,
we set |𝑇 𝑠 | = 4, 𝑇𝑜 is the set of all object classes except ‘person’ in
PASCAL VOC [Everingham et al. 2010] (|𝑇𝑜 | = 19), and 𝑁 = 64.
Please refer to the Appendix C for a list of all subjects and styles.
EvaluationMetrics Inspired by recent works on diffusion model
evaluation [Lee et al. 2023a; Yeh et al. 2023], we measure the follow-
ing properties of the derived images:
• Controllability: how well the generated images align with the
textual prompts. For each generated image and its corresponding
textual prompt, we measure the average cosine similarity between
the image embedding and the text embedding, extracted from a
pretrained CLIP [Radford et al. 2021] model.

• Diversity: the variety of generations given a single prompt. For
images generated by the same textual prompt, we calculate two
Venti scores [Friedman and Dieng 2022] independently based on
two visual embeddings: the [CLS] embeddings of DINOv2 [Oquab
et al. 2023] and CLIP visual embeddings (see Appendix).

• Aesthetics: the assessment of an image’s visual appeal and artistic
quality. For each image, we utilize AVA LAION-Aesthetics Predic-
tor V2, which is pretrained on AVA [Murray et al. 2012] dataset,
to estimate an aesthetics score range from 0 to 10.
In addition, we study a new property Independence specifically

for the illusion scenario. Intuitively, each image is expected to stick
to its corresponding textual prompt while not being distracted by
other textual prompts in the same group. Such property is named
as Independence, which is different from Controllability because in-
dependence is designed to reflect not only the similarity between
an image and its corresponding textual prompt but also the dissimi-
larity between the image and the textual prompts for other images.
In other words, this property focuses on how well the prime images
can ‘hide’ the overlay image or how challenging it will be for people
to infer the overlay image from a single prime image and vice versa.
• Independence Score: Therefore, we propose a new metric Indepen-
dence Score to reflect such property. Consider a set of𝑚 derived
images, denoted as {𝑑1, 𝑑2, . . . , 𝑑𝑚}, along with their correspond-
ing textual prompts {𝑡1, 𝑡2, . . . , 𝑡𝑚}. Initially, we extract the visual
embeddings 𝑣𝑖 = 𝑓𝑣 (𝑑𝑖 ) and text embeddings 𝑒 𝑗 = 𝑓𝑡 (𝑡 𝑗 ) using
the visual encoder 𝑓𝑣 and the text encoder 𝑓𝑡 from a pretrained
CLIP [Radford et al. 2021] model respectively. Subsequently, we
compute the cosine similarity 𝑘𝑖 𝑗 = CosineSimilarity(𝑣𝑖 , 𝑒 𝑗 ) be-
tween any visual and text embeddings 𝑣𝑖 and 𝑒 𝑗 . The results are
assembled into a matrix 𝐾 , where 𝑘𝑖 𝑗 is put in the 𝑖-th row and

𝑗-th column. The Independence Score 𝑆IS is calculated by the
following equations.

𝐾𝑑∈{0,1} = Softmax(𝐾/𝜏, 𝑑) (7)
𝑆IS := min(diag(𝐾0) ∪ diag(𝐾1)) (8)

where 𝜏 = 0.05 is a temperature constant, Softmax(·, 𝑙) stands
for softmax operation along 𝑙-th dimension and diag(·) presents
a set of the diagonal elements of (·). 𝑆IS is designed to become
higher when all images 𝑑𝑖 align best with their corresponding
textual prompts compared with other textual prompts.

Label Model 𝑤5 SDL DTL Explanation
Steps Steps

A SDXL 3 500 8 Our Main Method
B SDXL 1 500 8 Equal Weights
C SD15 3 500 8 Stable Diffusion 1.5
D SDXL 3 4000 1 Almost entirely SDL

Base SDXL 3 0 1 Our Baseline

Table 2. A summary of our methods. SDL stands for Score Distillation loss,
and DTL stands for Dream Target Loss. See our appendix for more ablations.

Methods
We compare several variants of our method against a baseline.

The Baseline generates images with a single step of dream-target
loss. Our main Method A optimizes the images using 500 steps of
score distillation loss followed by 8 steps of dream target loss. It
applies relative weights of𝑤 = [1, 1, 1, 1, 3] to prioritize the quality
of the hidden image over its constituent primes.
We also test three ablations: Method B uses equal weights 𝑤 =

[1, 1, 1, 1, 1] for all derived images. Method C replaces SDXL with
Stable Diffusion 1.5, keeping other settings the same as the main
method. Method D uses 4000 steps of score distillation loss followed
by a single dream target loss step for smoothing, to evaluate the
effectiveness of score distillation loss alone. For a fair comparison,
all methods were run for up to 15 minutes on a single NVIDIA A100
GPU. Please see the appendix for several more ablations.
Results For all metrics, we report the score distributions achieved
by our default method and the baseline in Fig. 4.
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Fig. 4. Comparison of multiple score distributions. Refer to axes for metrics.
Our framework clearly outperforms the baseline for all metrics except di-
versity (Vendi Score). We argue the additional constraints intrinsic to our
task (of generating illusions) contributed to reduced diversity.

Our method significantly outperforms the baseline in all metrics
except the Vendi Score, which is expected because, for our method,
there are more constraints from the derived images applied during
the generation process.
The score distributions of four variants of our method are pre-

sented in Fig. 5. Each row of Fig. 5 presents two metrics. The sub-
figures on the left-hand side show the overall performance of a
specific method. In general, all methods perform similarly well in
terms of Controllability (Cosine Similarity) and Diversity (Vendi
Score) (the first two rows in Fig. 5). Method A shows significant
advantages in Aesthetics (Aesthetics Score) and Methods A and D
achieve relatively higher Independence Score.
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Fig. 5. Score distributions over methods (left) and styles (right). A, B, C, D
(blue, orange, green, red respectively) stand for four variants of our method.
Results indicate the significance of prompts for illusion generation.

A detailed look at different art styles is presented on the right-
hand side of each row of Fig. 5, where different metrics respond
diversely to different art styles. Controllability (Cosine Similarity)
prefers Style 3 and Style 4 while the Diversity (Vendi Score) prefers
Style 2. The Aesthetics Score and Independence Score are generally
robust to the different styles. However, the Aesthetics Score prefers
Style 4 slightly more than Style 1.

In conclusion, our quantitative evaluations show that the prompts
used are more important than the chosen implementation, and
there is no clear one-size-fits-all method. However, we observe that
the optimal method depends on the art styles and subjects used.
Therefore, one should carefully select a method when generating
illusions in a specific art style. The main takeaways are: 1) no single
method is universally optimal, and 2) the best method varies based
on the art style and subject matter. A further study on subjects is
available in the Appendix.
4.3 Discussions
Q1: Can we get better Diffusion Illusions by running for a longer time?
Yes. Fig. 6 shows the trend of Controllability (Cosine Similarity)

and Aesthetics (Aesthetics Score) as the images from Section 4.2
are optimized. Relative time ranges from 0 (start) to 1 (end) of the
optimization process. All four methods show a clear increase in
scores as optimization progresses.

Fig. 6. CLIP Cosine Similarity (left) and Aesthetics Score (right) increase
when optimizing for a longer time.
Q2: Is Independence Score a qualitatively valid metric?
Yes, as shown in Fig. 18. The figure shows how images with high
independence scores align well with their textual prompts, while
lower scores indicate less relevance between the overlay image and
the subject. The first two examples have high scores, with each
image aligning with its prompt. The third is not closely related to
‘sofa’, having a lower score. The last example has the lowest score,
with the overlay visually biasing more towards cow’ than ‘bottle’.
Q3: Why do we use Fourier Feature Networks?
Earlier experiments optimizing prime images directly in pixel space
resulted in information being encoded at very high frequencies and
requiring pixel-perfect alignment to generate the intended derived
images (see Fig. 13). While the result was pleasing when viewed

digitally, it was impractical for real-world illusions. Motivated by
previous arguments [Burgert et al. 2022a,b], we elect to use Fourier
Features Network [Tancik et al. 2020] based parametric image rep-
resentations. In the appendix we show parametrization ablations.
4.4 Failure Cases

Diffusion Illusions does not always manage to generate convinc-
ing illusions. Because of the difficult, over-constrained nature of
this problem where we want to derive a greater number of derived
images than we have primes, sometimes not all of them are well
generated (see failure examples in Fig. 12).
In order to quantify this failure rate, we used a visual language

model GPT4 [OpenAI 2023] to classify derived images from our
hidden overlays illusion. We used 20 sets of prompts in Style 2,
choosing subjects evenly from 𝑇𝑜 , generating 20 illusions using
method A for each set of prompts. We asked GPT4 to classify each
one as a multiple choice question, allowing it to choose from 20
categories: 𝑇𝑜 + ‘person’.

GPT4 correctly classified 97% of the prime images, but only 56%
of the hidden images. This indicates the derived hidden images were
less clear than the prime images. In general, they are darker as well.
It classified all 5 derived images for a given illusion correctly 53% of
the time. Please see our appendix for more experimental details.

5 Limitations and Future Work
Diffusion Illusions is limited to generating optical illusions where

prime images are arranged to yield various visual stimuli, as speci-
fied in our problem statement (Section 2). Other illusion types, like
apparent motion, are out of scope. See the Twisting Squares Illusion
in our appendix for an additional example within our domain.

The main drawbacks are slow inference time (over 10 minutes per
illusion) and potential quality issues due to printing imperfections
(see Fig. 17). Increasing the number of derived images from a small
set of prime images also fundamentally limits output quality. For
example, we could theoretically extend the flip illusion to four, or
even eight viewing angles, but in doing so the quality of each derived
image would decrease because of the limited amount of information
contained in that single prime image. Other limitations include
model biases (see ethics statement in supplementary).
Given the human-perceptual nature of illusions, we recognize

the limitations of our automated metrics and plan to release user
studies that measure ease of recognition (how well derived images
match their targets), degree of concealment (how well the hidden
overlays hide their target images ), and preference ratings (which
algorithm variants and prompting methods are most appealing) -
using both physical and simulated illusions.

6 Conclusion
In this paper, we establish the formal definition of the problem

of generating illusions and introduce Diffusion Illusions, a versatile
pipeline designed for the generation of a diverse array of illusions.
Complemented by comprehensive experiments conducted across
multiple facets, we verify the effectiveness of our proposed method
qualitatively and quantitatively. We also successfully fabricate the
prime images in the real world. Other areas to explore include more
types of illusion generation and creative ways to take advantage of
diffusion models.
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p1:	Girl	in	Dress

p1:	Bunny

p1:	Bunny	in	Jacket

p1:	Elephant p1:	Penguin

p1:	Boat	at	Sea

d2:Boat	at	Sea

d2:	Giraffe	d2:	Dog

d2:	Bunny	in	Jacket

d2:	Duck

d2:	Girl	in	Dress

Flip Illusions

p1:	Girl	in	Dress

p1:	Bunny

p1:	Bunny	in	Jacket

p1:	Elephant p1:	Penguin

p1:	Boat	at	Sea

d2:Boat	at	Sea

d2:	Giraffe	d2:	Dog

d2:	Bunny	in	Jacket

d2:	Duck

d2:	Girl	in	Dress

Fig. 7. Flip Illusion Examples: Please view these images upside-down
as well as right-side-up to see two different subjects. Note: In this illusion,
𝑑1 = 𝑝1. These images are high resolution - please zoom in!

p1		:	Base p2		:	Rotator

0	° →		d1
t1	=	“Stone	Angel”

90	° →		d2
t2	=	“Jungle	Couple”

180	°		→		d3
t3	=	“Santa	Dog”

270	°		→		d4
t4	=	“Squid”

45	°

135	°225	°

315	°

a4

a1

a3

a2

Fig. 8. We print our rotation overlay illusions onto two transparent sheets:
the “rotator” image is placed on a “base” image over a backlight. Then, as
the rotator spins, we derive four different images.

Fig. 9. We print our hidden overlay illusions onto four transparent sheets,
and stack them on top of each other. These seemingly normal pictures of
animals (cow, penguin, dog and giraffe) reveal a cat when overlaid and
placed in front of a backlight. Please note that these are all real photographs.

Fig. 10. We depict the dream-target loss above. It is an iterative process,
refining derived images using SDEdit to create target images, which the
derived images are then regressed to with gradient descent. The derived
images look more like the targets after approaching them than before.

Fig. 11. An overlay illusion at different phases of the optimization process.
Note how the artifacts and over-saturation caused by score distillation loss
(phase 1) are fixed by dream target loss (phase 2).

Fig. 12. Failure modes for Hidden Overlay illusions. Top row: not all subjects
are easily recognizable. Middle row: the hidden image became too dark.
Bottom row: the plant is not well hidden - it bleeds into the prime images.

Fig. 13. A Hidden Overlay image with prime images optimized directly in
pixel space. While high-frequency encoding of the hidden image results in
less perceivable interference in each individual image, it results in a brittle
illusion that is disrupted without pixel-perfect printing and alignment.
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d5p1 p2 p3 p4

The	MoonSci-Fi	PlanetsSpaceshipAstronaut

Horse	SketchPig	SketchGoat	SketchMoose	Sketch Chicken	Sketch

PlaygroundPlaygroundPlaygroundPlayground

t5	 is	a	textual	prom
pt

t5	 is	a	user-given	target	im
age

Cat	in	BoxBeachSnowmanGirl	in	Dress Frog

SheepDogMotorbikeCat Cow

CatTrainChairHorse Bird

TrainSheepDogSofa Bicycle

Fig. 14. Hidden Overlay Examples: On the left are the four prime images
𝑝1, 𝑝2, 𝑝3, 𝑝4 and on the right is the derived image 𝑑5 = 𝑝1 · 𝑝2 · 𝑝3 · 𝑝4,
which simulates overlaying them over a backlight. Note: In this illusion,
𝑑𝑖 = 𝑝𝑖 for 𝑖 ∈ 1 . . . 4. These images are high resolution - please zoom in!

Knight Winter	Woman Strawberry Hal4ling

p2		:	Rotatorp1		:	Base d4d3d2d1

DogBirdBusSheep

Mt	FujiPandaPancakesSydney	Opera	House

Statue	of	LibertyDisco	BallSwordApe

Bunny	Warrior Ancient	Man Pirate	Girl Anime	Girl

Fig. 15. Rotation Overlay Examples:On the left are the two prime images
𝑝1, 𝑝2, and on the right are the four derived images𝑑1...4 that are obtained by
taking the product of the primes, simulation of them overlaid on a backlight.
These images are high resolution - please zoom in!

Step 1: Print
Use a laser printer, ideally

on a transparency film

Step 2: Laminate
Optional, protects

them from scratches

Step 3: Cut Out
Be as precise as possible
to minimize misalignment

Step 4: Put on Backlight
Brighter is better. Depicted below:
an upside-down MacBook screen

For comparison:
Printed on transparency

Printed on paper

Step 5: Stack Them
Stack the overlays on top of each other,

shining the backlight through them
The less light reflected off the surface, the better

Step 5 (if using paper):
If you printed onto paper instead of a transparent film,

you may need to use a brighter backlight (such as a ceiling light). 
In this case, face the back of the paper towards you 

Fig. 16. Overlay Illusion Fabrication: Paper can be used instead of trans-
parencies., in which case a stronger backlight may be needed. Printer color
inaccuracy affects illusion quality, which can be caused by low toner levels.

Fig. 17. The colors shift after printing out Hidden Overlay Illusion images.
First row: digital copy of the images and the overlay simulation. Second
row: real-world photos of the printed images.

Fig. 18. Four illusions randomly selected with diverse independence scores.
For each row, the subject is listed above, and the method, style, and inde-
pendence scores are on the left. The four middle images are primes that
derive the overlay on the right.
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1 # _ ___ _ _ __ ___ _
2 # | \ | |_ |_ | | (_ | / \ |\ |
3 # |_/ _|_ | | |_| __) _|_ \_/ | \|
4 # ___ __ ___ _ __
5 # | | | | | (_ | / \ |\ | (_
6 # _|_ |_ |_ |_| __) _|_ \_/ | \| __)
7 # _ __ _ _ _ _ _ _ _
8 # |_) (_ |_ | | | \ / \ / / \ | \ |_
9 # | __) |_ |_| |_/ \_/ \_ \_/ |_/ |_
10
11 ###### PART 1: Initialization
12 if ILLUSION_TYPE =='FLIP':
13 n = 1 #Number of Prime images
14 m = 2 #Number of Derived images
15 A = [
16 #A stands for Arrangements
17 lambda P: P[0],
18 lambda P: P[0]. rot180(),
19 ]
20 W = [1, 1] # Importance of each derived image
21 T = ['Dog', 'Sloth ']
22
23 if ILLUSION_TYPE =='ROTATE ':
24 n = 2 #Two Prime Images: Base , Rotator
25 m = 4 #Four Derived Images
26 k = 2 #The backlight brightness constant
27 A = [
28 lambda P: k*P[0]*P[1],
29 lambda P: k*P[0]*P[1]. rot90(),
30 lambda P: k*P[0]*P[1]. rot180(),
31 lambda P: k*P[0]*P[1]. rot270(),
32 ]
33 W = [1, 1, 1, 1]
34 T = ['Dog', 'Cat', 'Man', 'Woman ']
35
36 if ILLUSION_TYPE =='HIDDEN ':
37 n = 4 #Two Prime Images: A, B, C, D
38 m = 5 #Four Derived Images:
39 # A, B, C, D, Hidden
40 k = 3 #The backlight brightness constant
41 A = [
42 lambda P: P[0],
43 lambda P: P[1],
44 lambda P: P[2],
45 lambda P: P[3],
46 lambda P: k*P[0]*P[1]*P[2]*P[3],
47 ]
48 W = [1, 1, 1, 1, 3] # Prioritize the hidden image
49 T = ['Dog', 'Penguin ', 'Giraffe ', 'Cow', 'Cat']
50 ## OR, to use a QR code or another specific image ...
51 T = ['Dog', 'Penguin ', 'Giraffe ', 'Cow',
52 load_image('qr_code.png') ]
53
54 assert len(T) == len(A) == len(W) == m
55
56 # Initialize all prime images
57 P = [RgbFourierFeatureNetwork(resolution =(512 ,512))
58 for _ in range(n)]
59 # Initialize our latent diffusion model
60 F = StableDiffusion ()
61 # We optimize the prime images via gradient descent.
62 optim = SGD(P.parameters ())
63
64
65 ###### PART 2: Helper Functions
66 def score_distill_loss(image , prompt ):
67 #Same loss proposed in DreamFusion -
68 # but with a latent diffusion model
69 image_latent = F.encode_image(image)
70 timestep = random_int (0, F.max_timestep)
71 noise = F.get_noise(timestep)
72 noised_latent = F.add_noise(
73 image_latent , noise , timestep
74 )
75 with torch.no_grad ():
76 text_embed = F.clip.embed(prompt)
77 pred_noise = F.unet(
78 noised_latent , text_embed , timestep
79 )
80 return abs(noise - pred_noise ).sum()
81
82 def image_similarity(a, b):
83 #Our image similarity metric
84 return SSIM(a,b) - MSE(a,b)

85
86 def img2img(image , prompt , strength ):
87 #Based on SDEdit - simplified here
88 #When strength=1, the entire image is replaced
89 #When strength=0, nothing is changed
90 image_latent = F.encode_image(image)
91 timestep = int(strength * F.max_timestep)
92 noise = F.get_noise(timestep)
93 noised_latent = F.add_noise(
94 image_latent , noise , timestep
95 )
96
97 #Perform diffusion as normal , but starting from
98 #our noised_latent instead of pure noise
99 diffused_latent = F.text_to_image(
100 prompt ,
101 initial_latent=noised_latent ,
102 initial_timestep=timestep ,
103 )
104
105 new_image = F.decode_image(diffused_latent)
106 return new_image
107
108
109 ###### PART 3: Optimization
110
111 #Phase 1: Score Distillation Loss
112 for iteration in range (2000):
113 loss = 0
114 for a,t,w in zip(A,T,W):
115 # Derived image d
116 # comes from an arrangement of prime images
117 d = a(P)
118 if isinstance(t, str):
119 loss += w * score_distill_loss(d, t)
120 elif is_image(t):
121 # For hiding custom images such as QR codes
122 loss -= w * image_similarity(d, t)
123 optim.update(loss) # Take a gradient descent step
124
125 #Phase 2: Dream -Target Loss
126
127 #Start from strength = .90 instead of 1
128 # in order to use the results from Phase 1
129 schedule = [.90, .80, .70 ... .30, .20, .10]
130
131 for strength in schedule:
132 # Define the image translation function
133 G = lambda text ,image: img2img(text ,image ,strength)
134
135 # Step 1: Set our Dream -Targets
136 Z = []
137 for a, t in zip(A,T):
138 if isinstance(t, str):
139 # Tweak a derived image to get a new target
140 d = a(P)
141 z = G(t, d)
142 elif is_image(t):
143 #Use a predefined target (e.g. a QR code)
144 z = t
145 Z.append(z)
146
147 # Step 2: Approach our Dream -Targets
148 for iteration in range (1000):
149 #Optimize P so that D approaches T
150
151 loss = 0
152 for a,z,w in zip(A,Z,W):
153 d = a(P)
154 loss -= w * image_similarity(d, z)
155
156 # Take a gradient descent step
157 optim.update(loss)
158
159
160 ###### PART 4: Fabrication
161
162 #We're done! Return the primes -
163 # and print them out physically!
164 printed_P = send_to_laser_printer(P)
165
166 #Oh, and also , make sure someone uses them ...
167 fun = have_human_arrange_the_illusions(printed_P)
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A Twisting Squares Illusion
Diffusion Illusions is a very general framework and can generate

more than just the three illusion types presented in the main paper.
In Fig. 20, we show the Twisting Squares illusion - where we break
up an image into a grid of tiles, and spin these tiles together as
a mechanical linkage. This type of illusion was inspired by the
mechanical linkage shown in Mould [2024].

It consists of one prime image and two derived images, where the
Like all other illusions printed in this paper, it can be physically

fabricated - we have 3d printed these linkages and they are shown
in Fig. 19.

B Implementation Details
B.1 Brightness Constant

In the actual implementation, you’ll see we multiply our derived
overlay images by a scalar “brightness constant” 𝑘 , that is chosen
based on the type of illusion. This constant is visible in the given
pseudocode — please see how it is used there. This is because in
real life, when viewing the hidden overlay and rotating overlay
illusions, the backlight can be arbitrarily bright. Without this term,
the derived images obtained from overlaying other images would
necessarily be darker than their prime images, because images have
values between 0 and 1, and the product between any two numbers
between 0 and 1 are guaranteed to be 1 or less.
Because the hidden character illusion deals with 4 overlays, it

benefits from a higher brightness constant than the rotation overlay
illusion (𝑘 = 3 vs 𝑘 = 2). The brightness constant 𝑘 is not applicable
for the flip illusion, as it does not deal with overlay transparencies.
B.2 Static Targets
When creating an illusion, usually text prompts are used for all

values of𝑇 . However, it is possible to specify a fixed image target by
setting𝑇 as an image instead. This allows us to hide specific images
such as QR codes, nyan cat, pentagrams, or even entire segments
of text (see Fig. 14). Instead of applying score distillation loss for
example, we regress torwards that given image. Please see the below
pseudocode for an exact implementation.
B.3 Libraries

Weuse SDXL as our latent diffusionmodel [Podell et al. 2023]. Our
SDEdit implementation of SDXL comes from von Platen et al. [2022],
using PyTorch [Paszke et al. 2019]. Our implementation of Fourier
Feature Networks is directly adapted from the TRITON [Burgert
et al. 2022b], using the default parameters for their Neural Neural
Textures. Our implementation of Score Distillation Loss comes from
Peekaboo [Burgert et al. 2022a].

C ExtendedQuantitative Evaluation
C.1 Additional Hidden Overlay Ablations
Extending our Hidden Overlay ablations in Section 3, we have

added six extra ablations. Their details are summarized in Table 3.
Extending our scoring results in Fig. 5 and Fig. 4, we compare all of
our ablations in Fig. 30.

Ablations I,J,K,L compare different image parametrizations. Our
default image parametrization is a Fourier Feature Network, dis-
cussed in Section 4.3. By comparison, we also try using a 512 ×
512 resolution pixelwise representation, which we call the “Raster”

Tw
ist

Fig. 19. The Twisting Squares illusion is made using a 3d printer, and
the tiles are put on top. When one tile is twisted, all the others move
together - where every odd tile spins 90°clockwise and every even tile spins
90°counterclockwise.
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Twist Twist Twist Twist

Twisting Squares Illusion

d1 = p1 d2

“Pyramids	and	Sphinx” “Astronaut”

“Donut”

“Cat”

“Bunny”

“Anime	Girl”

“Winter	Woman”

“Violin	Sketch”

“Ice	Cream	Cone”

“Dog”

“Astronaut”

“Anime	Girl”

“Cat	in	a	Box”

“Dog	Sketch”

Fig. 20. The twisting squares illusion breaks an image into a mechanical linkage of tiles, and twists them to create a new image. Every odd tile spins 90°clockwise
and every even tile spins 90°counterclockwise.
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https://diffusionillusion.github.io

Fig. 21. Please visit our project page — it contains fully interactive simula-
tions of all illusions in this paper, as well as many more!

parametrization (visualized in Fig. 13). Additionally, to see if we can
reduce grainy artifacts by using a lower raster resolution, we intro-
duce ablations with the “Low-Res 64 × 64 Raster” parametrization.
As it turned out, this does not help with the grainy artifacts.

Ablations G,H change the number of prime images - using two
or three primes instead of the default four.

We have also included visualizations for new ablations in Fig. 22
and Fig. 23.
Abaltions J,K are visualized in Fig. 22. When using score dis-

tillation loss alone (without dream target loss), very poor results
can be expected. Since the gradients pass through the latent diffu-
sion model’s encoder, instead of creating a visually pleasing image,
it creates an adversarial image to satisfy the encoder. Decreasing
the resolution of the image does appear to help a little bit, but the
resulting image is still grainy and full of artifacts.

Dream target loss does not suffer from this problem as badly, and
in Fig. 23 we showcase the effect of a single step of dream target
loss, which defines the difference between methods D and E. Dream
target loss helps to smooth out artifacts and increase detail.
C.2 Quantitative Evaluation Details
This section provides more details and additional experiments

regarding benchmarking the derived images of Hidden Overlay
Illusion and Rotation Overlay Illusion.
Textual Prompts The set of image styles 𝑇 𝑠 is listed as follow
where <s> stands for the subject token:

Effects of Raster Resolution on Score Distillation Loss

Method J:

Method K:

“Bus”“Bird”“Bottle”“Bike”“Car”

“Plant”“Car”“Boat”“Cow”“Train”

Low
Resolution

64x64
Raster

Raster

Fig. 22. When using only score distillation loss on a raster parametrization
(without dream target loss and without using Fourier Feature Networks),
very poor results can be expected. Note that adding dream target loss
helps mitigate these artifacts (see Fig. 13 and Fig. 24), but does not entirely
eliminate them.

p1 p2 p3 p4 d5

Effect of a Single Step of Dream Target Loss

Score 
Distillation

Loss
Only

After 1 
Step of
Dream
Target
Loss

Method E:

Method D:

“Car”“Frog”“Frog”“Frog”“Frog”

Fig. 23. The difference between method D and method E is a single dream
target step. Note how artifacts are reduced.

Style 1: 3d pixar style render animation of a <s>
Style 2: an award winning photograph of a <s>
Style 3: an award winning photograph of a <s> in the
deep jungle
Style 4: an award winning photograph of a <s> in times
square

The subject set 𝑇𝑜 contains subjects from the PASCAL VOC
dataset [Everingham et al. 2010]: aeroplane, bicycle, bird, boat, bottle,
bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, sofa, train, tv/monitor.
Additional Evaluation Metrics We further extend the evalu-
ation introduced in the main paper by including more metrics in
each aspect:

• Controllability We take advantage of a vision language model
(VLM) LLaVA-1.5 [Liu et al. 2023a,b] to measure the similarity
between the image and the textual prompt. The instruction
sent to the VLM is
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Label Model 𝑤5 SDL Steps DTL Steps Primes Parametrization Explanation

A SDXL 3 500 8 4 Fourier Features Our Main Method
B SDXL 1 500 8 4 Fourier Features Equal Weights
C SD15 3 500 8 4 Fourier Features Stable Diffusion 1.5
D SDXL 3 4000 1 4 Fourier Features Almost entirely SDL
E SDXL 3 4000 0 4 Fourier Features Pure Score-Distillation-Loss
F SDXL 3 0 20 4 Fourier Features Pure Dream-Target Loss
G SDXL 3 500 8 2 Fourier Features Only two prime images
H SDXL 3 500 8 3 Fourier Features Only three prime images
I SDXL 3 500 8 4 Raster Raster Parametrization
J SDXL 3 4000 0 4 Raster Raster Parametrization with Pure Score-Distillation-Loss
K SDXL 3 4000 0 4 Low-Res 64 × 64 Raster Low-Resolution Raster Parametrization with Pure Score-Distillation-Loss
L SDXL 3 500 8 4 Low-Res 64 × 64 Raster Low-Resolution Raster Parametrization

Base SDXL 3 0 1 4 Fourier Features Our Baseline

Table 3. A comprehensive summary of our ablation methods, continuing from Table 2. SDL stands for Score Distillation Loss and DTL for Dream Target Loss.

p1 p2 p3 p4 d5

Effect of Dream Target Loss with Raster Parametrization

Score 
Distillation

Loss
Only

After 
Dream
Target
Loss

Method J:

Method I:

“Cat”“Motorbike”“Bicycle”“Horse”“Plant”

“Cat”“Motorbike”“Bicycle”“Horse”“Plant”

Fig. 24. Dream target loss helps to reduce artifacts when using the raster
representation, but does not eliminate them. The high frequency pixel grain
makes them hard to print and align in real life, as opposed to our fourier
feature representation. Note the zoomed in cat face from the hidden images,
and how its fidelity is improved.

Give a single score from 0 to 10 regarding how well the
image looks like a <s>. A higher score means the image
generally looks similar to a <s>. Only return the score.

where <s> stands for the subject token and it will substituted
by the actual subject for a specific image.

• Diversity Recent research [Darcet et al. 2023] suggests that
the feature from the original DINOv2 might suffer from ab-
normal patches corresponding to the plain areas of the image.
Therefore, we report the Vendi Score using the feature from
DINOv2+reg [Darcet et al. 2023].

• Aesthetics Similar to Controllability, we collect an aesthetics
score from LLaVA-1.5 using the following instruction:
Give a single score from 0 to 10 regarding how well this
image looks. A higher score means the image generally
looks more natural and has fewer artifacts. Only return
the score.

In all metrics, the vision encoder of CLIP and the backbone of all
DINO variants is a ViT-L/14 [Dosovitskiy et al. 2020]. The version
of LLaVA-1.5 we utilized is fine-tuned from Vicuna-13B.

Fig. 25. Examples of our method and the baseline, starting from the same
target image. Note how in the baseline, you can see the sheep in the bus
image and the bus in the sheep image - which is why its independence score
is lower.

C.3 Extended Results of Hidden Overlay Illusion
Fig. 25 presents comparative examples between the proposed

method and the established baseline, starting from the same target
image. The images from the baseline are heavily interfered with by
others in the same group and the overlay image.

Fig. 26, Fig. 27, Fig. 28 and Fig. 29 show full evaluation results of
the derived images from baseline and four variants of our method.
The advantages of our method compared to the baseline are further
supported by the new metrics introduced in this section, like bet-
ter Controllability and Aesthetics Score from LLaVA (see Fig. 26).
Meanwhile, LLaVA has relatively less bias on art styles and different
subjects (Fig. 27 and Fig. 29)
C.4 Results of Rotation Overlay Illusion
We further benchmark the performance of Rotation Overlay Il-

lusion. The evaluation follows the same protocol as the Hidden
Overlay Illusion except that each group of Rotation Overlay Illusion
images only has 4 derived images, which require 4 textual prompts
at a time and we focus on one style:

a beautiful award-winning royalty-free full-frame stock
photo of an isolated <s>.
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Fig. 26. Full evaluation on Hidden Overlay Illusion, each row is a group of
thematically-aligned figures.

The result is presented in Fig. 31. Our method is significantly better
than the baseline in terms of controllability (CLIP cosine similarity)
and Aesthetics Score.
Ablation on the Number of Derived Images In this paper,
by default we discuss a challenging rotation overlay illusion task
where two prime images need to ‘encode’ four derived images. In
this section, we conduct an ablation on the number of derived im-
ages.We perform an ablation study on the number of derived images,
specifically focusing on cases with 2 to 4 derived images. Our hy-
pothesis posits that reducing the number of derived images eases
generation constraints, potentially enhancing image quality. This
is corroborated by Fig. 32, which demonstrates improved image-
text alignment and aesthetic scores in simpler tasks. Conversely,
we observe a divergent trend in diversity, suggesting the interfer-
ence between multiple derived images. Fig. 33 presents a qualitative
comparison between problem formulations.
C.5 Failure-rate Experiment Details

Continuing the experiment outlined in the main text Section 4.4.
Please see Table 4 for a complete list of prompts, and see Fig. 34
for a confusion matrix of hidden-image subjects. We would like to
point out that this test does not capture how well the fifth is hidden
(i.e. how hard it is to predict the hidden subject by looking at the

Fig. 27. Controllability score distributions over methods (left) and styles
(right). A, B, C, D stands for four variants of our method

Fig. 28. Diversity score distributions over methods (left) and styles (right).
A, B, C, D stands for four variants of our method

primes without overlaying them). Since that is much more difficult
to test automatically, we plan to do a user study (see Section 5).
We created these illusions on a single NVIDIA RTX5000, with an
average runtime of 11 minutes (see Fig. 35).
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Fig. 29. Aesthetics score distributions over methods (left) and styles (right).
A, B, C, D stands for four variants of our method

Fig. 30. Ablation results on Style 2. Method G and H yield overall better
results due to fewer numbers of prime image limits.

The following textual prompt was given to GPT4 in addition to
each derived image, all classified completely independent of one
another
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Fig. 31. Full evaluation on Rotation Overlay Illusion, each row is a group of
thematically-aligned figures.
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Fig. 32. Ablation on the number of the derived images in Rotation Overlay
Illusion

p2 :	Rotatorp1		:	Base
d4d3d2d1

car bird

sofa

potted	plant

potted	planttv/monitor
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Fig. 33. Qualitative results of Rotation Overlay Illusions with different num-
bers of derived images
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# A B C D Z

1 aeroplane sheep cow chair car
2 bicycle chair train sheep boat
3 bird car cat horse person
4 boat dog table bus cow
5 bottle television motorbike cat bicycle
6 bus cow boat car plant
7 car cat bird bottle horse
8 cat table car aeroplane sheep
9 chair bird television dog aeroplane
10 cow motorbike chair train bird
11 dog sofa aeroplane plant bottle
12 horse bottle dog sofa television
13 motorbike train bus television dog
14 person bicycle bottle bird bus
15 plant horse bicycle motorbike cat
16 sheep bus person bicycle train
17 sofa boat plant person chair
18 table aeroplane horse boat motorbike
19 television plant sofa cow table
20 train person sheep table sofa

Table 4. This table shows the sets of subjects used for our hidden overlay
illusion failure-rate experiment. All prompts use Style 2, i.e “an award win-
ning photograph of a <s>” where the subject is shown in this table. There
are 20 sets of prompts used. Columns ‘A’,‘B’,‘C’,‘D’ refer to the four prime
images, and ‘Z’ refers to the fifth derived image obtained by overlaying the
four primes.

Your job is to classify this image as correctly
as possible. It may be abstract or it may
be realistic. But in any case, your job is
to guess the subject of this image. Your
response must be exactly one word, from the
following choices: 1. aeroplane 2. bicycle 3.
bird 4. boat 5. bottle 6. bus 7. car 8. cat 9.
chair 10. cow 11. dog 12. horse 13. motorbike
14. person 15. plant 16. sheep 17. sofa 18.
table 19. television 20. train

D Fabrication Details
All of the illusions we present are realizable in the real world in

physical form. To create a flip illusion in real life is quite easy - just
print out one of the images onto a sheet of paper using a regular
color laser printer.
The hidden overlay and rotation overlay can also be created

with a basic color laser printer, and this is how we made all of the
photographic examples in this paper. Searching “transparency film”
online will yield many cheap transparent plastic films that are laser-
printer compatible (a pack of 100 sheets sells for about $20 USD).
However, after printing onto these overlays, it is useful to laminate
them, as the ink can be easily scratched off. We do this with a basic
thermal lamination machine that can also be purchased cheaply
online.
After printing, laminating, and cutting the transparencies, stack

them and put them over a light source. In this paper, we use a
backlight taken from an old LCD monitor for our photos. However,
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Fig. 34. A confusion matrix for the hidden images in our GPT4-recognition
experiment, normalized by row. This confusion matrix is only for the hidden
images, because the prime images were almost always correctly classified.
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Fig. 35. Generation times for our hidden-overlay failure-rate experiment.
On average, it took 11 minutes per illusion on a single NVIDIA A100 GPU.

any backlight will work, and holding the stack up to a bright window
with sunlight also works well.

Since we model the light filtering process as multiplication, and
multiplication is commutative, our modeling process assumes that
the ordering of the layers does not matter. This is true in real life as
well - with sufficient backlighting, you will get the same visual result
whether transparency 𝑝1 is on the top or on the bottom. However
in practice, since some light reflects off the top transparency, it will
not be perfectly identical.
Additionally, we found that inserting a thin layer of water be-

tween the transparent overlay sheets further enhances the visual
effect, and slightly reduces the need for as strong of a backlight. We
suspect this is because it eliminates the air gap between the sheets,
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leading to a smaller difference in the index of refraction. This is not
necessary, but can somewhat enhance the clarity of the illusion.

Wewould like to point out, however: transparencies are not strictly
needed to create overlay illusions. Regular paper can also be used,
provided a strong enough backlight and use a sufficient amount of
ink. We’ve included a comparison in figure Fig. 16.

E Additional Analysis
In Fig. 40, we show the optimization timeline for a hidden overlay

illusion with timestamps and phases labeled. Artifacts are present
throughout the score distillation phase, which are cleaned up in the
dream target loss phase.

F Reproducibility and Ethics Statement
Reproducibility Statement Our work builds off open-source
models whose pre-trained weights are publicly available. Our frame-
work simply performs inference time optimizations to generate
illusions. In our paper, we detail all specifics of our implementation
(including PyTorch style pseudo-code) necessary to generate such
illusions. Our code (and all material necessary to replicate results in
paper) will be released publicly.
Ethics Statement A main ethical concern for any generative
art model is that it will reduce the demand for human artists in

its domain. Generating optical illusion artwork is a very difficult
artistic task, and there are few artists that attempt it. Thus, the genre
of illusions is currently relatively small and there is limited demand
for illusions at present. Diffusion Illusions makes the generation of
optical illusions accessible to the general public, making illusions
more accessible to the layperson. We believe that, if anything, Dif-
fusion Illusions and related works are likely to increase interest in
illusions and the demand for human-created illusions as a result.

Secondly, our experiments utilize Stable Diffusion 1.5 and Stable
Diffusion-XL models, and thus our reference implementation of
the Diffusion Illusions pipeline will replicate any biases contained
within these models. These models are trained on the LAION-2B(en)
and LAION-5B datasets, and may over-represent English-language
or Western content. The Stable Diffusion 1.5 and Stable Diffusion-
XL models are intended for research purposes only, and thus our
reference implementation should also be used exclusively for re-
search and informative purposes. Some recent models, including
DeepFloyd, are licensed for limited production use and our pipeline
easily generalizes to them; however, they have higher system re-
quirements.

Another potential ethical concern is that this will be used to hide
information stenographically for nefarious purposes, although we
deem this situation unlikely to be an issue in practice.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.



Diffusion Illusions: Hiding Images in Plain Sight • 9

0.2 0.4
Cosine Similarity (CLIP)

aeroplane

bicycle

bird

boat

bottle

bus

car

cat

chair

cow

dining table

dog

horse

motorbike

potted plant

sheep

sofa

train

tv monitor

Su
bj

ec
t

A (default)
B
C
D

0 5
Controllability (LLaVA)

aeroplane

bicycle

bird

boat

bottle

bus

car

cat

chair

cow

dining table

dog

horse

motorbike

potted plant

sheep

sofa

train

tv monitor

Su
bj

ec
t

A (default)
B
C
D

Fig. 36. Controllability of Hidden Overlay Illusion over different subjects.
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Fig. 37. Diversity of Hidden Overlay Illusion over different subjects.
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Fig. 38. Aesthetics of Hidden Overlay Illusion over different subjects.
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Fig. 39. Independence Score of Hidden Overlay Illu-
sion over different subjects.
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Fig. 40. A sample optimization timelapse for a hidden overlay illusion. Times are denoted in ‘minute:second’ format. DTL stands for Dream Target Loss, and
SDS refers to Score Distillation Sampling.
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Make your own Hidden Overlay Illusions!
Print these onto a transparency film using a laser printer and cut them out!
Then, with a bright light behind them, overlay and align all four images.
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