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Figure 1. Diffusion Illusions are a new class of automatically generated optical illusions. The images on top demonstrate the three major
types of illusions we discuss in this paper: Flip Illusions, Rotation Overlay Illusions, and Hidden Overlay Illusions. (Terminology is
formally defined in Sec. 2). The bottom showcases an example of Hidden Overlay Illusions: four images (prime images p1...4) that
when stacked on top of each other (arrangement) reveal a new fifth image (derived image d5). Please note that these illustrations are
all photographs of the generated images physically fabricated in the real world.

Abstract
We explore the problem of computationally generating

special ‘prime’ images that produce optical illusions when
physically arranged and viewed in a certain way. First, we
propose a formal definition for this problem. Next, we in-
troduce Diffusion Illusions, the first comprehensive pipeline
designed to automatically generate a wide range of these
illusions. Specifically, we both adapt the existing ‘score
distillation loss’ and propose a new ‘dream target loss’ to
optimize a group of differentially parametrized prime im-
ages, using a frozen text-to-image diffusion model. We

study three types of illusions, each where the prime im-
ages are arranged in different ways and optimized using
the aforementioned losses such that images derived from
them align with user-chosen text prompts or images. We
conduct comprehensive experiments on these illusions and
verify the effectiveness of our proposed method qualitatively
and quantitatively. Additionally, we showcase the success-
ful physical fabrication of our illusions — as they are all
designed to work in the real world. Our code and exam-
ples are publicly available at our interactive project web-
site: https://diffusionillusions.com
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1. Introduction
An image that is viewed right-side up appears to be an or-
dinary photo of a dog but viewed upside-down looks like a
sloth. Four images, each showing an everyday playground,
when superimposed form a QR code (see Fig. 1). These
types of images that cause illusions have long required im-
mense time and skill to create, but we have developed a gen-
eral pipeline capable of generating appealing illusions auto-
matically. More specifically, given a frozen text-to-image
diffusion model, we adapt existing score distillation loss
and propose a new dream target loss to optimize a group of
prime images differentiably parametrized by fourier feature
networks. Eventually, the images are optimized to comply
with the textual and/or image prompts given by the user to
trigger illusions in a certain arrangement.

Generating such images is not the sole domain of play.
Illusions – that is, visual stimuli whose interpretation de-
pends on how they are arranged and viewed – have been
created and studied for centuries. While they are an appeal-
ing sort of “visual puzzle”, they also reveal much about how
humans perceive the world and about the abstract structure
of images. Even though illusions have been created and
studied for centuries, and certain types have been generated
by computers for decades, photorealistic illusions have re-
mained largely out of reach until the very recent past, and
until this point, there has been no general framework for
understanding and generating such illusions.

1.1. Contributions
In this paper, we present the first formalized, generic frame-
work for creating such illusions. We name our framework
Diffusion Illusions. Our major contributions can be summa-
rized as follows:
1. We provide the first formal definition for the problem of

generating illusions;
2. We present Diffusion Illusions, a flexible tool for gener-

ating multiple types of illusions;
3. We assess the quality of computer-generated illusions

in multiple aspects and conduct comprehensive experi-
ments to validate the effectiveness of our method;

4. We successfully fabricate the generated images and
their corresponding illusions in the real world.

1.2. Related Work: History of Illusions
1.2.1 Classical illusions

Images whose interpretation depends on viewing angle or
category bias, sometimes known as ambiguous images,
have been designed for centuries. Such images have drawn
the scholarly interest of psychologists [3, 14] and philoso-
phers [42] since the 1800s. Ambiguous images have been
used experimentally to understand how category bias dur-
ing perception varies as people age [22], and families of
ambiguous images, such as ambigrams [12], are often con-
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Figure 2. A brief history of illusions. Classical illusions: (A)
“Fruit Basket” (1500s) by Giuseppe Arcimboldo provides a very
early example, depicting a face when viewed in one orientation
and a fruit basket when viewed in the other. (B) When viewed
directly, “Kaninchen und Ente” (1892) is ambiguous; 45◦ rota-
tions make it appear as a rabbit or a duck [14, 42]. (C) “My Wife
and My Mother-in-Law” (1915) by William Ely Hill may be in-
terpreted as showing either a young or an old woman depending
on how it is grouped [3, 22]. Computationally-generated illu-
sions: (D) a hybrid image which appears to be a leopard when
viewed close-up and an elephant when viewed from a distance
[23]. (E) a wire sculpture which depicts three different 2010s
American politicians when viewed from different angles [13].
Diffusion-based illusions: (F) an image depicting a duck when
viewed upright and a rabbit when rotated 90◦ ccw [39]. (G) a set
of computationally-generated ambigrams reading ‘Ohio’, ‘cloud’,
‘yeah’, and ‘python’ [37]. (H) an image depicting a giraffe when
viewed upright and a penguin when viewed upside-down [11].

structed as a way of better understanding the domains they
belong to. We present some relevant examples of classical
illusions in Figure 2.

1.2.2 Computationally-generated illusions

A growing stream of research has focused on computation-
ally generating specific types of illusions. One early exam-
ple is hybrid images [23]. Hybrid images are created from
two images by combining the low-frequency features of one
with the high-frequency features of the other. Viewers see
the object from the low-frequency image when viewing the
hybrid image from a distance, and see the object from the
high-frequency image when viewing up-close. While this
process may be automated, the authors note that for best
results, the overall shapes of the low-frequency and high-
frequency images should be manually aligned.

A number of researchers have created 3-dimensional ob-
jects that are interpreted as different objects when they are
viewed from different angles. In multi-view wire art [13],
a single 3D wire may be viewed or lit from multiple an-
gles to obtain different clean line drawings; and in view-
dependent surfaces [27], a colored 3D-printed height field
may be viewed from different angles to obtain different col-
ored images.
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An additional type of illusion is steganography, in which
apparently normal objects may be viewed in a particular
way to uncover a hidden meaning. In The Magic Lens [25],
seemingly meaningless dots are generated such that, when
viewed through an intricate refractive lens, they will com-
prise a specified image.

1.2.3 Diffusion-based Image Generation

Diffusion Probabilistic Models [38] resulted in rapid ad-
vances for image generation tasks, including text-to-image
generation [7, 21, 31, 32, 34–36, 44]. Recent works [4, 29]
sample pre-trained diffusion models without re-training to
generate outputs in novel domains. Score Distillation in-
troduced in DreamFusion [29] is the underlying technique
enabling optimization of samples in any arbitrary param-
eter space without backpropagation through the diffusion
model. We utilize these techniques to construct a novel
framework for illusion generation. These rapid advances
have led to an exploration of suitable evaluation metrics,
both quantitative and qualitative [1, 2, 10, 15, 43], which
we use to evaluate our proposed framework.

1.2.4 Contemporary Work

Following recent image generation developments, a small
but growing body of non-scholarly or unpublished work has
approached the problem of generating multi-view 2D im-
ages [39] or ambigrams [37]. While these approaches ap-
pear to yield appealing results, they are narrowly focused on
specific illusions, may require substantial cherry-picking,
and have not been formally presented or published. In con-
trast, we present a formalized, generic approach capable
of generating variable types of illusions followed by ex-
tensive evaluation (both quantitative and qualitative) of our
approach. Inspired by our Diffusion Illusions project, con-
temporary work in [11] presents a formal framework for ef-
ficient (fast inference) illusion generation, but operates on a
subset of our illusions (namely, those with a single “prime
image” in our terminology). Furthermore, [11] does not ex-
plore any illusions with overlay which is generally more
challenging and the generality for real-world transfer (i.e.
fabrication of illusions in the real world).

2. Problem Statement
We define an illusion as the situation that occurs when a
set of physical images called prime images p are viewed or
arranged in multiple ways, with each arrangement yielding
a unique perceived image, referred to as a derived image d,
that represents a specific object or scene.

Most of the existing illusions we have discussed consist
of a single 2D image or 3D object as a prime image, with the
arrangements being simple translations and rotations of the
prime image in 2D or 3D space. In the simplest case where

a 2D drawing is rotated to yield different perceived objects,
the arrangement operations may be modeled as simple ro-
tations. The near and distant views composing the Hybrid
Images illusion [23], on the other hand, might be best mod-
eled by high-pass and low-pass spatial frequency filters.

In an effort to find a fully general definition of illusions
and leverage the new possibilities afforded by text-to-image
models, we do not limit ourselves to a single prime image.
We additionally consider situations where multiple compos-
able prime images, for instance, stencils or light-filtering
transparencies, may be arranged in different ways to yield
different derived images. In the particular case of compos-
ing two light-filtering transparencies, the arrangement op-
eration may be modeled as a rotation of each prime image
followed by a multiply operation to model the light-filtering
step.

Formally, the illusion process is described as follows.
Consider some prime image space P representing phys-
ically realizable visual stimuli, and some derived image
space D representing a human view of a scene. (Practi-
cally, we use 2D RGB images to represent both spaces.)
Then, an illusion consists of a tuple of n prime images
{p1, p2, . . . , pn}, pi ∈ P and a tuple of m arrangement op-
erations A = {a1, a2, . . . , am}, aj : Pn → D. Each aj
represents an arrangement of all of the prime images to ob-
tain a single derived image dj , such that the illusion yields a
tuple of m derived images {d1, d2, . . . , dm}, dj ∈ D. (This
articulation may be easily generalized to heterogeneous il-
lusions, such as a wireframe viewed through a stencil; in
this case, each prime image pi belongs to its own prime im-
age space Pi.)

This framing is complementary to the existing literature
on “ambiguous images”. The illusion process is not in-
tended to cover images that have multiple interpretations
when viewed in exactly the same way, though it may be
possible to articulate a perceptual bias towards a certain cat-
egory as a type of arrangement. However, the illusion pro-
cess otherwise broadens the category of ambiguous images
to include situations involving multiple composed images.
We propose multiple examples below that are to our knowl-
edge wholly novel.

This definition allows one to separate the process of cre-
ating an illusion into two steps: first, selecting a prime im-
age domain and defining and modeling the arrangement op-
eration; and second, searching the prime image domain for
images that yield the desired derived images when arranged
in each way. While the first step requires creativity and ex-
perimentation, the second is sufficiently concrete that it may
be practically automated, as discussed in Sec. 3.

3. Method
We introduce Diffusion Illusions, a flexible tool for generat-
ing multiple types of visual illusions that can be styled with
unprecedented control (e.g. photorealistic images, artistic
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Figure 3. Architecture overview. Trainable components are shown in blue, intermediate variables are in red, non-trainable functions are in
white, and inputs are in green. A diffusion network provides two different loss signals pulling the derived images towards the text prompts.
Only a single loss signal, either Score Distillation Loss or Dream Target Loss, is computed at each training step. Gradients on the derived
images are backpropagated through the arrangement operations and prime images to the parameters of the Fourier Feature Networks. No
backpropagation occurs through the diffusion network.

styles, or even arbitrary information such as QR codes). At
a high level, the Diffusion Illusions pipeline consists of

• a set of prime images parameterized by θ (P),
• a set of specific arrangement processes (A, that derive

images from all primes),
• a frozen text-to-image diffusion model (F)

We refer to the outputs of the arrangement processes as
derived images (D). The diffusion model is used to pro-
vide a signal using one of two mechanisms (Score Distilla-
tion Loss or Dream Target Loss, which will be covered in
Sec. 3.3) to suitably optimize the prime images, which in
turn modifies the derived images. Our overall pipeline is
illustrated in Fig. 3.

3.1. Prime Images

As described in Sec. 2, prime images are the physical im-
ages we eventually want to generate, that will trigger an
illusion when viewed or arranged in multiple ways.

In our framework, prime images are represented as
512 × 512 dimensional RGB images, meaning that P ≃
R(512,512,3). Instead of direct pixel-space image represen-
tation, we use Fourier Features Networks (FFN) [40] to rep-
resent prime images in parametric form. For each prime im-
age, the learnable weights of a single MLP network act as
its representation. The MLP network maps image-space co-
ordinates to corresponding RGB values similar to [5], form-
ing an implicit image representation. We further discuss the
advantages of FFN in Sec. 4.3.

3.2. Arrangement Processes

The purpose of arrangement processes, A, is to operate on
a set of prime images (including single element sets) and
produce unique outputs, the derived images. For a single
arrangement process ai,

di = ai(P ) (1)

each unique sequence of prime images produces a distinct
derived image, di. Each operation ai ∈ A should possess
three properties: 1) For the same set of inputs the operation
should always provide the same output (fixed operation). 2)
ai should also be differentiable, i.e., the possibility to ex-
plicitly calculate gradients propagation from output to input
through the operation. 3) ai should also be realizable in the
real world: some series of physical actions on prime images
(in physical form) should result in the same derived image.
To summarize, an arrangement process must be fixed, dif-
ferentiable, and realizable in the real world.

We select three illusion categories for further study:

• Flip Illusion is one of the most classical types of illu-
sions. We define this illusion as consisting of a single 2D
prime image, which is interpreted as some object when
viewed upright (the first derived image d1) and as another
object when viewed upside-down (the second derived im-
age d2).

• Rotation Overlay Illusion is a minimal type of illusion
involving multiple prime images. This illusion is based
on two square light-filtering 2D prime images, one base
and one rotator. The rotator image is rotated with 0, 90,
180, and 270 degree angles and superimposed on the base
image; each rotation yields a derived image interpreted as
a different object (see Fig. 4).

• Hidden Overlay Illusion is introduced to push the
boundaries of the prime-to-derived relationship, in which
four light-filtering prime images, each of which is inter-
pretable on its own, may be merged to obtain a fifth hid-
den image. Here the modeled view process for the first
four derived images is simply the identity function; the
view process for the fifth is the product of the four prime
images (see Fig. 5).

We select these illusion styles to cover varying set cardi-
nalities for prime images and arrangement processes. The
arrangement process relevant to each illusion is presented
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p1		:	Base p2		:	Rotator

0	° →		d1
t1	=	“Hatsune	Miku”

90	° →		d2
t2	=	“Emma	Watson”

180	° →		d3
t3	=	“Winter	Woman”

270	° →		d4
t4	=	“Elf	Woman”

45	°

135	°225	°

315	°

a4

a1

a3

a2

Figure 4. This figure shows the rotation overlay illusion arrange-
ment process. Please note that these are all real photographs. The
“rotator” image is placed on a “base” image over a backlight, both
printed out onto transparent sheets. Then, as the rotator spins, we
derive four different images.

Figure 5. This figure shows the rotation overlay illusion arrange-
ment process. Please note that these are all real photographs.

in Tab. 1. We also present photographs of real-world fabri-
cations for each illusion type in Fig. 1, Fig. 4 and Fig. 5.

3.3. Diffusion Illusion Optimization

Having selected three diverse illusion styles, we next dis-
cuss the process for learning optimal prime images. Given
fully-differentiable operations (also realizable in the physi-
cal world) that arrange a set of prime images to produce a

Illusion n m a

Flip 1 2
a1(p) = p1

a2(p) = rot(p2, 180)

Rotation Overlay 2 4 aj(p) = p1 ∗ rot(p2, 90j)

Hidden Overlay 4 5
aj(p) = pj , j ≤ 4

a5(p) = p1 ∗ p2 ∗ p3 ∗ p4

Table 1. This table describes our mathematical models of the Flip,
Rotation Overlay, and Hidden Overlay illusions, describing the
number of prime images n, the number of derived images m, and
the arrangement operator a mapping from prime image space Pn

to derived image space Dm. The arrangements in the Flip illusion
are simply the identity and a 180 degree rotation. The arrangement
operations in the Overlay illusions use a multiplication blend op-
eration to model shining light through multiple transparencies; the
result is multiplied by a constant and normalized using tanh to
avoid losing dynamic range.

derived image, we leverage two types of losses in successive
phases to provide suitable alignment signals to the derived
images, which in turn would update the prime images. In
the first phase, we use Score Distillation Loss [29], a high-
fidelity but expensive algorithm that applies a conditional
denoising model to the input at every image update step. In
the second phase, we introduce the complementary Dream
Target Loss, a faster technique that pulls the derived images
towards periodically updated target images.

Given a frozen text-to-image latent diffusion model
F [33] which contains a text encoder Ft, an image encoder
Fe and the denoising network Fu, we initialize a series of
prime images pi each represented by a Fourier Feature Net-
work with random parameters θi. Derived images di then
can be presented by the arrangement process as introduced
in Sec. 3.2. For each derived image di, a target ti that de-
scribes in natural language the expected visual appearance
of its final form is given by the user.

3.3.1 Score Distillation Loss

Score Distillation Loss is a widely-used technique to align
images with external conditioning such as textual prompts.
In essence, Score Distillation Loss (LSD) randomly selects
a timestep τ of the denoising process, adds noise ητ propor-
tionate to the timestep τ to a derived image di and applies
the denoising process, which is conditioned on correspond-
ing ti, to di + ητ to obtain an estimated noise η̂τ . The dif-
ference, which we implement as a mean absolute error, be-
tween the estimated noise η̂τ and actual noise ητ provides a
signal for the discrepancy between the derived image di and
the target description ti for the derived image. This differ-
ence is normalized by τ and then provided as a gradient to
the derived image and backpropagated through the arrange-
ment process to the prime image. Importantly, this process
does not require any backpropagation through the diffusion
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Figure 6. We depict the dream-target loss above. It is an iterative
process, refining derived images using SDEdit to create target im-
ages, which the derived images are then regressed to with gradient
descent. Note how the derived images look more like the targets
after approaching them than before, such as the man’s green face.

model.
In summary, as shown in Eq. (3), score distillation loss

provides gradients to optimize the image parameterized by
θ, such that iterative updates to the image converge its ap-
pearance towards the paired text ti.

η̂τ = Fu(di + ητ , τ,Ft(ti)) (2)

LSD
i (ti, di) = ∥ητ − η̂τ∥1 (3)

3.3.2 Dream Target Loss

Dream Target Loss is a novel optimized version of the Score
Distillation Loss for circumstances where it is not trivial
for prime image(s) to follow the gradients from the Score
Distillation Loss.

Instead, Dream Target Loss (LDT) periodically applies a
conditional image-to-image process zi = G(ti, di) to obtain
a target image zi for each derived image di, conditioned on
the textual prompt ti. Then we gradually pull each derived
image di towards its target image zi using a combination
of the structural image similarity loss (LSSIM ) and a pixel-
wise mean squared error loss (L2).

Therein, we obtain a joint loss to similarly learn optimal
prime images pi resulting in derived images aligned to each
of our target concepts.

zi = G(ti, di) (4)

LDT
i (zi, di) = LSSIM(zi, di) + L2(zi, di) (5)

An additional feature of the Dream Target Loss relative
to the SD variant is that it tends to introduce less noise.

The total dream target loss is a weighted average across

all per derived image loss terms.

LDT =
∑

wiLDT
i (6)

where the loss terms are weighted by importance values
w1...m. By default, all wi = 1 except in the hidden overlay
illusion where the hidden image is prioritized via w5 = 3.

In practice, for each target image, we optimize the prime
image for multiple (i.e. 1000) steps using the dream target
loss. Then we repeat the process with the latest prime im-
age so that the target image is updated towards the current
derived image for faster convergence (Illustrated in Fig. 6).
We implement G using SDEdit [19] where random noise is
first added to the input image, and the noisy image is then
iteratively denoised conditioned on the text prompt using
a frozen diffusion model to generate an output image (see
Appendix A.4).

Note that in both Score Distillation Loss and Dream Tar-
get Loss, we propagate gradients to the prime images, up-
dating their parametric representation (i.e. the weights of
the MLP Fourier Feature Networks θ), and the diffusion
model is kept frozen.

3.3.3 Visual Prompt

Optionally, one or more ti can be given as a specific target
image instead of a text prompt — letting users hide targets
such as QR codes or blocks of text. In that case, for both
phases, the discrepancy between the derived image and the
target image is measured using Eq. (5), providing gradients
for the prime images.

3.4. Fabrication
The flip illusions are trivial to manufacture in real life and
need only a printer. The hidden overlay and rotation over-
lay illusions are created by printing their prime images on
overhead display sheets on a color laser printer, before be-
ing laminated to protect them from scratches. With a strong
enough backlight, the hidden overlays and rotation over-
lay illusions can be performed on regular pieces of paper
as well.

4. Experiments
In this section, we evaluate our framework presenting qual-
itative visualizations and quantitative metrics.

4.1. Qualitative Evaluation
We illustrate randomly selected example outputs of our Dif-
fusion Illusions framework. Visualizations for our three se-
lected illusion styles, Flip Illusion, Rotation Overlay Illu-
sion, and Hidden Overlay Illusion are presented in Fig. 7,
Fig. 8, and Fig. 9 respectively. For more interactive ex-
amples, please refer to the project website https://
diffusionillusions.com
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Flip Illusions

p1:	Girl	in	Dress

p1:	Bunny

p1:	Bunny	in	Jacket

p1:	Elephant p1:	Penguin

p1:	Boat	at	Sea

d2:Boat	at	Sea

d2:	Giraffe	d2:	Dog

d2:	Bunny	in	Jacket

d2:	Duck

d2:	Girl	in	Dress

Figure 7. Flip Illusion Examples: Please view these images
upside-down as well as right-side-up to see two different subjects.
Note: In this illusion, d1 = p1

p2		:	Rotatorp1		:	Base d4d3d2d1

Rotation Overlay Illusions

LipstickLaser	DinosaurEgyptian	PyramidsHatsune	Miku

Jean	Luc	PicardFrogWinged	BullHatsune	Miku

Cat	in	BoxHatsune	MikuFrogGirl	In	Dress

Hatsune	Miku

Gandalf

Bunny	Warrior

Girl	In	Dress

Ring

Ancient	Man

Jean	Luc	Picard

Dragon

Pirate Girl

Frog	In	Dress

Bilbo	Baggins

Anime Girl

Figure 8. Rotation Overlay Examples: On the left are the two
prime images p1, p2, and on the right are the four derived images
d1...4 that are obtained by taking the product of the primes, sim-
ulation of them overlaid on a backlight. TODO: xl: Ryan: please
check the labels

4.2. Quantitative Evaluation

Next, we quantitatively benchmark the Hidden Overlay Illu-
sion generated by the variants of Diffusion Illusion in mul-
tiple aspects and demonstrate the generalization ability and
robustness of the proposed framework. Please check Ap-
pendix B as well for other illusions and more details.

d5p1

Hidden Overlay Illusions
p2 p3 p4

Cat	in	BoxLipstickFrogHatsune	Miku Darth	Vader

The	MoonSci-Fi	PlanetsSpaceshipAstronaut

Hatsune	MikuHatsune	MikuHatsune	MikuHatsune	Miku Jean	Luc	Picard

Horse	SketchPig	SketchGoat	SketchMoose	Sketch Chicken	Sketch

PlaygroundPlaygroundPlaygroundPlayground

Anime	CatAnime	DogAnime	GirlAnime	Boy

t5	 is	a	textual	prom
pt

t5	 is	a	user-given	target	im
age

Cat	in	BoxBeachSnowmanGirl	in	Dress Frog

Figure 9. Hidden Overlay Examples: On the left are the four
prime images p1, p2, p3, p4 and on the right is the derived image
d5 = p1 · p2 · p3 · p4, which simulates overlaying them over a
backlight. Note: In this illusion, d1...4 = p1...4

Image Generation Protocol We design a pipeline that
constructs diverse textual prompts randomly and automat-
ically. The pipeline relies on two sets of textual prompts.
The first set T s is of sentences where each sentence de-
scribes a unique art style of an image and contains one sub-
ject token representing the potential subject of the sentence.
The second set T o is of different subjects like ‘dog’, ‘cat’,
‘car’, and so on. When generating images with a specific
style ts ∈ T s, we uniformly sample five unique subjects toi
where i ∈ {1, . . . , 5} from T o. Then we substitute the sub-
ject token in ts with toi to construct the textual prompt ti.
Finally, t1, . . . , t5 is used to guide the generation of derived
images.

For a full evaluation, the whole pipeline is repeated for N
times per style ts to generate N groups of illusion images.
In practice, we set |T s| = 4, To is the set of all object classes
except ‘person’ in PASCAL VOC [9] (|T o| = 19), and N =
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64. Please refer to the Appendix B for the complete list of
subjects and styles.
Evaluation Metrics Inspired by recent works on diffu-
sion model evaluation [16, 43], we measure the following
properties of the derived images:

• Controllability: how well the generated images align with
the textual prompts. For each generated image and its
corresponding textual prompt, we measure the average
cosine similarity between the image embedding and the
text embedding, extracted from a pretrained CLIP [30]
model.

• Diversity: the variety of generated images conditioned on
the same prompt. For images generated by the same tex-
tual prompt, we calculate two Venti scores [10] indepen-
dently based on two visual embeddings: the [CLS] em-
beddings of DINOv2 [24] and CLIP visual embeddings
(see Appendix).

• Aesthetics: the assessment of an image’s visual appeal
and artistic quality. For each image, we utilize AVA
LAION-Aesthetics Predictor V2, which is pretrained on
AVA [20] dataset, to estimate an aesthetics score range
from 0 to 10.

In addition, we study a new property Independence
specifically for the illusion scenario. Intuitively, each im-
age is expected to stick to its corresponding textual prompt
while not being distracted by other textual prompts in the
same group. Such property is named as Independence,
which is different from Controllability because indepen-
dence is designed to reflect not only the similarity between
an image and its corresponding textual prompt but also the
dissimilarity between the image and the textual prompts for
other images. In other words, this property focuses on how
well the prime images can ‘hide’ the overlay image or how
challenging it will be for people to infer the overlay image
from a single prime image and vice versa.

• Independence Score: Therefore, we propose a new
metric Independence Score to reflect such property.
Consider a set of m derived images, denoted as
{d1, d2, . . . , dm}, along with their corresponding tex-
tual prompts {t1, t2, . . . , tm}. Initially, we extract the
visual embeddings vi = fv(di) and text embeddings
ej = ft(tj) using the visual encoder fv and the text
encoder ft from a pretrained CLIP [30] model respec-
tively. Subsequently, we compute the cosine similarity
kij = CosineSimilarity(vi, ej) between any visual and
text embeddings vi and ej . The results are assembled into
a matrix K, where kij is put in the i-th row and j-th col-
umn. The Independence Score SIS is calculated by the
following equations.

K0 = Softmax(K/τ, 0) (7)
K1 = Softmax(K/τ, 1) (8)
SIS := min(diag(K0) ∪ diag(K1)) (9)

where τ = 0.05 is a temperature constant, Softmax(·, l)
stands for softmax operation along l-th dimension and
diag(·) presents a set of the diagonal elements of (·). SIS

is designed to become higher when all images di align
best with their corresponding textual prompts compared
with other textual prompts.

Methods The baseline method of our experiments is a
vanilla SDXL generating target images with corresponding
textual prompts independently for one step using score dis-
tillation loss. We benchmark four variants of our meth-
ods named A, B, C, and D. Method C is our default
method. It involves 500 steps of score distillation loss
followed by 8 steps of dream target loss and applies rela-
tive weights [1,1,1,1,3] respectively - which prioritizes the
quality-derived hidden image over its constituent primes.
In addition, Method A uses Stable Diffusion 1.5 instead
of SDXL, which is used by all other methods. Method B
uses equal weights for all derived images, using weights
[1,1,1,1,1] respectively. Lastly, method D uses 4000 steps
of score distillation loss followed by 1 step of dream target
loss for smoothness, to evaluate the ability of score distilla-
tion loss alone in this task. For fairness, all methods were
constrained to run in a 15-minute time window on a single
NVIDIA A100 GPU.
Results For all metrics, we report the score distributions
achieved by our default method and the baseline in Fig. 10.
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Figure 10. Comparison of multiple score distributions. Refer to
axes for metrics. Our framework clearly outperforms the baseline
for all metrics except diversity (Vendi Score). We argue the ad-
ditional constraints intrinsic to our task (of generating illusions)
contributed to reduced diversity.

Our method significantly outperforms the baseline in all
metrics except the Vendi Score, which is expected because,
for our method, there are more constraints from the derived
images applied during the generation process.

The score distributions of four variants of our method are
presented in Fig. 11. Each row of Fig. 11 presents two met-
rics. The subfigures on the left-hand side show the overall
performance of a specific method. In general, all methods
perform similarly well in terms of Controllability (Cosine
Similarity) and Diversity (Vendi Score) (the first two rows
in Fig. 11). Method C shows significant advantages in Aes-
thetics (Aesthetics Score) and Methods C and D achieve rel-
atively higher Independence Score.

A detailed look at different art styles is presented on the
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Figure 11. Score distributions over methods (left) and styles
(right). A, B, C, D stands for four variants of our method. Re-
sults indicate the significance of prompts for illusion generation.

right-hand side of each row of Fig. 11, where different met-
rics respond diversely to different art styles. Controllability
(Cosine Similarity) prefers Style 3 and Style 4 while the Di-
versity (Vendi Score) prefers Style 2. The Aesthetics Score
and Independence Score are generally robust to the differ-
ent styles. However, the Aesthetics Score prefers Style 4
slightly more than Style 1.

In conclusion, the prompts used are far more important
than the chosen implementation. There is no clear one-
size-fits-all method indicated by our quantitative evalua-
tions, however, we observe that depending on the art styles
and subjects used, a different method will be optimal. One
should carefully pick up a method when generating illusions
in a specific art style. A further study on subjects is avail-
able in the Appendix.

4.3. Discussions

In this section, we discuss several observations that may in-
spire future investigation.

Q1: Can Diffusion Illusion yield better images when run-
ning for a longer time?

Yes. Fig. 12 presents the trend of Controllability (Cosine
Similarity) and Aesthetics (Aesthetics Score) as the images
used in Sec. 4.2 are getting optimized. The term ‘relative
time’ is employed to denote the progression of wall-clock
time during the optimization process. A relative time value
of 0 means the beginning of optimization, whereas a value
of 1 marks its conclusion. Fig. 12 reveals a notable trend:
there is a consistent increase in metrics as the optimization
process advances.

Figure 12. CLIP Cosine Similarity (left) and Aesthetics Score
(right) increase when optimizing for a longer time.

Q2: Is Independence Score a qualitatively valid metric?

Generally yes. Fig. 13 shows four illusions randomly se-
lected with diverse independence scores. For each row, the
subject of each image is listed above, and the method, style,
and independence scores are listed on the left-hand side.
The four images grouped in the middle are prime images
and they derive the overlay image on the right-hand side.
For the first two examples where the independence score
is relatively high, each image aligns with its corresponding
textual prompt. However, for the third example, the overlay
image is not closely related to the subject ‘sofa’, resulting
in a lower independence score. Furthermore, in the last ex-
ample of Fig. 13, the overlay image visually biases more
towards ‘cow’ instead of ‘bottle’, leading to the lowest in-
dependence score.

Q3: What are the reasons to use Fourier Features Network?

Earlier experiments optimizing prime images directly in
pixel space resulted in information being encoded at very
high frequencies and requiring pixel-perfect alignment to
generate the intended derived images (see Fig. 14). While
the result was pleasing when viewed digitally, it was im-
practical for real-world illusions. Motivated by previous ar-
guments [4, 5], we elect to use Fourier Features Network
[40] based parametric image representations.

9



Figure 13. Examples with diverse independence scores

Figure 14. A Hidden Overlay image with prime images optimized
directly in pixel space. While high-frequency encoding of the hid-
den image results in less perceivable interference in each individ-
ual image, it results in a brittle illusion that is disrupted without
pixel-perfect printing and alignment.

5. Conclusion

In this paper, we establish the formal definition of the prob-
lem of generating illusions and introduce Diffusion Illu-
sions, a versatile pipeline designed for the generation of a
diverse array of illusions. Complemented by comprehen-
sive experiments conducted across multiple facets, we ver-
ify the effectiveness of our proposed method qualitatively
and quantitatively. We also successfully fabricate the prime
images in the real world. Other areas to explore include
more types of illusion generation and creative ways to take
advantage of diffusion models.

Limitations The main limitation of our framework is the
relatively high inference time required for generating illu-
sions. While our framework improves over plain score dis-
tillation in terms of inference time, we are still slow. Im-
proving the speed of illusion generation frameworks such
as ours presents an interesting future direction. We note that
contemporary work has already explored ways to minimize
this inference time.

Furthermore, the effectiveness of visual illusion in the
real world may vary a lot due to the errors introduced in the
printing process. Fig. 15 and Fig. 16 present the effect of
the color shifts when printing the images.

Other limitations include biases contained in our models

Figure 15. The colors shift after printing out Rotation Overlay
Illusion images. First row: digital copy of the images and the
overlay simulation. Second row: real-world photos of the printed
images.

Figure 16. The colors shift after printing out Hidden Overlay Illu-
sion images. First row: digital copy of the images and the overlay
simulation. Second row: real-world photos of the printed images.

(discussed in detail under the ethics statement).

Reproducibility Statement Our work builds off open-
source models whose pre-trained weights are publicly avail-
able. Our framework simply performs inference time opti-
mizations to generate illusions. In our paper, we detail all
specifics of our implementation (including PyTorch style
pseudo-code) necessary to generate such illusions. Our
code (and all material necessary to replicate results in pa-
per) will be released publicly.

Ethics Statement A main ethical concern for any gener-
ative art model is that it will reduce the demand for human
artists in its domain. Generating optical illusion artwork is
a very difficult artistic task, and there are few artists that at-
tempt it. Thus, the genre of illusions is currently relatively
small and there is limited demand for illusions at present.
Diffusion Illusions makes the generation of optical illusions
accessible to the general public, making illusions more ac-
cessible to the layperson. We believe that, if anything, Dif-
fusion Illusions and related works are likely to increase in-
terest in illusions and the demand for human-created illu-
sions as a result. Secondly, our experiments utilize Sta-
ble Diffusion 1.5 and Stable Diffusion-XL models, and
thus our reference implementation of the Diffusion Illusions
pipeline will replicate any biases contained within these
models. These models are trained on the LAION-2B(en)
and LAION-5B datasets, and may over-represent English-
language or Western content. The Stable Diffusion 1.5 and
Stable Diffusion-XL models are intended for research pur-
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poses only, and thus our reference implementation should
also be used exclusively for research and informative pur-
poses. Some recent models, including DeepFloyd, are li-
censed for limited production use and our pipeline easily
generalizes to them; however, they have higher system re-
quirements.

Contributions RB led the project, conceived the prime
image / derived image illusion relationship, invented the
classes of hidden and rotation overlay illusions, and de-
signed & implemented the Diffusion Illusions pipeline.
XL designed and performed all quantitative evaluation ex-
periments. AL formalized and wrote the Illusion prob-
lem statement and contributed to paper writing. KR dis-
cussed multiple aspects of the project, supported designing
a prior framework (Peekaboo [4]) important for building our
setup, and contributed to paper writing. MR supervised the
project, advised on research direction, and discussed all as-
pects of the project.
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Diffusion Illusions: Hiding Images in Plain Sight

Supplementary Material

https://diffusionillusions.com

Figure 17. Please visit our project page — it contains fully inter-
active simulations of all illusions in this paper, as well as many
more!

A. Implementation Details
A.1. Brightness Constant

In the actual implementation, you’ll see we multiply our
derived overlay images by a scalar “brightness constant” k,
that is chosen based on the type of illusion. This constant is
visible in the given pseudocode — please see how it is used
there. This is because in real life, when viewing the hidden
overlay and rotating overlay illusions, the backlight can be
arbitrarily bright. Without this term, the derived images ob-
tained from overlaying other images would necessarily be
darker than their prime images, because images have values
between 0 and 1, and the product between any two numbers

between 0 and 1 are guaranteed to be 1 or less.
Because the hidden character illusion deals with 4 over-

lays, it benefits from a higher brightness constant than the
rotation overlay illusion (k = 3 vs k = 2). The brightness
constant k is not applicable for the flip illusion, as it does
not deal with overlay transparencies.

A.2. Static Targets
When creating an illusion, usually text prompts are used
for all values of T . However, it is possible to specify a
fixed image target by setting T as an image instead. This
allows us to hide specific images such as QR codes, nyan
cat, pentagrams, or even entire segments of text (see Fig. 9).
Instead of applying score distillation loss for example, we
regress torwards that given image. Please see the below
pseudocode for an exact implementation.

A.3. Libraries
We use SDXL as our latent diffusion model [28]. Our
SDEdit implementation of SDXL comes from [41], us-
ing PyTorch [26]. Our implementation of fourier feature
networks is directly adapted from the TRITON [5], using
the default parameters for their Neural Neural Textures.
Our implementation of Score Distillation Loss comes from
Peekaboo [4].

A.4. Pseudocode
In this subsection, we show a Python-like pseudocode that
outlines the exact process of creating the algorithm. Refer
to the next page.

1
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1 # _ ___ _ _ __ ___ _
2 # | \ | |_ |_ | | (_ | / \ |\ |
3 # |_/ _|_ | | |_| __) _|_ \_/ | \|
4 # ___ __ ___ _ __
5 # | | | | | (_ | / \ |\ | (_
6 # _|_ |_ |_ |_| __) _|_ \_/ | \| __)
7 #
8 #
9 # _ __ _ _ _

10 # |_) (_ |_ | | | \ / \
11 # | __) |_ |_| |_/ \_/
12 # _ _ _ _
13 # / / \ | \ |_
14 # \_ \_/ |_/ |_
15
16
17 ###### PART 1: Initialization
18 if ILLUSION_TYPE==’FLIP’:
19 n = 1 #Number of Prime images
20 m = 2 #Number of Derived images
21 A = [
22 #A stands for Arrangements
23 lambda P: P[0],
24 lambda P: P[0].rot180(),
25 ]
26 W = [1, 1] # Importance of each derived image
27 T = [’Dog’, ’Sloth’]
28
29 if ILLUSION_TYPE==’ROTATE’:
30 n = 2 #Two Prime Images: Base, Rotator
31 m = 4 #Four Derived Images
32 k = 2 #The backlight brightness constant
33 A = [
34 lambda P: k*P[0]*P[1],
35 lambda P: k*P[0]*P[1].rot90(),
36 lambda P: k*P[0]*P[1].rot180(),
37 lambda P: k*P[0]*P[1].rot270(),
38 ]
39 W = [1, 1, 1, 1]
40 T = [’Dog’, ’Cat’, ’Man’, ’Woman’]
41
42 if ILLUSION_TYPE==’HIDDEN’:
43 n = 4 #Two Prime Images: A, B, C, D
44 m = 5 #Four Derived Images:
45 # A, B, C, D, Hidden
46 k = 3 #The backlight brightness constant
47 A = [
48 lambda P: P[0],
49 lambda P: P[1],
50 lambda P: P[2],
51 lambda P: P[3],
52 lambda P: k*P[0]*P[1]*P[2]*P[3],
53 ]
54 W = [1, 1, 1, 1, 3] # Prioritize the hidden image
55 T = [’Dog’, ’Penguin’, ’Giraffe’, ’Cow’, ’Cat’]
56 ## OR, to use a QR code or another specific image...
57 T = [’Dog’, ’Penguin’, ’Giraffe’, ’Cow’,
58 load_image(’qr_code.png’) ]
59
60 assert len(T) == len(A) == len(W) == m
61
62 # Initialize all prime images
63 P = [RgbFourierFeatureNetwork(resolution=(512,512))
64 for _ in range(n)]
65
66 # Initialize our latent diffusion model
67 F = StableDiffusion()
68
69 # We optimize the prime images via gradient descent.
70 optim = SGD(P.parameters())
71
72
73 ###### PART 2: Helper Functions
74 def score_distill_loss(image, prompt):
75 #Same loss proposed in DreamFusion -
76 # but with a latent diffusion model
77 image_latent = F.encode_image(image)
78 timestep = random_int(0, F.max_timestep)
79 noise = F.get_noise(timestep)
80 noised_latent = F.add_noise(
81 image_latent, noise, timestep
82 )
83 with torch.no_grad():
84 text_embed = F.clip.embed(prompt)
85 pred_noise = F.unet(
86 noised_latent, text_embed, timestep
87 )
88 return abs(noise - pred_noise).sum()

89
90 def image_similarity(a, b):
91 #Our image similarity metric
92 return SSIM(a,b) - MSE(a,b)
93
94 def img2img(image, prompt, strength):
95 #Based on SDEdit - simplified here
96 #When strength=1, the entire image is replaced
97 #When strength=0, nothing is changed
98 image_latent = F.encode_image(image)
99 timestep = int(strength * F.max_timestep)

100 noise = F.get_noise(timestep)
101 noised_latent = F.add_noise(
102 image_latent, noise, timestep
103 )
104
105 #Perform diffusion as normal, but starting from
106 #our noised_latent instead of pure noise
107 diffused_latent = F.text_to_image(
108 prompt,
109 initial_latent=noised_latent,
110 initial_timestep=timestep,
111 )
112
113 new_image = F.decode_image(diffused_latent)
114 return new_image
115
116
117 ###### PART 3: Optimization
118
119 #Phase 1: Score Distillation Loss
120
121 for iteration in range(10000):
122 loss = 0
123 for a,t,w in zip(A,T,W):
124 # Derived image d
125 # comes from an arrangement of prime images
126 d = a(P)
127 if isinstance(t, str):
128 loss += w * score_distill_loss(d, t)
129 elif is_image(t):
130 # For hiding custom images such as QR codes
131 loss -= w * image_similarity(d, t)
132 optim.update(loss) # Take a gradient descent step
133
134 #Phase 2: Dream-Target Loss
135
136 #Start from strength = .90 instead of 1
137 # in order to use the results from Phase 1
138 schedule = [.90, .89, .88 ... .03, .02, .01]
139
140 for strength in schedule:
141 # Define the image translation function
142 G = lambda text,image: img2img(text,image,strength)
143
144 # Step 1: Set our Dream-Targets
145 Z = []
146 for a, t in zip(A,T):
147 if isinstance(t, str):
148 # Tweak a derived image to get a new target
149 d = a(P)
150 z = G(t, d)
151 elif is_image(t):
152 #Use a predefined target (e.g. a QR code)
153 z = t
154 Z.append(z)
155
156 # Step 2: Approach our Dream-Targets
157 for iteration in range(1000):
158 #Optimize P so that D approaches T
159
160 loss = 0
161 for a,z,w in zip(A,Z,W):
162 d = a(P)
163 loss -= w * image_similarity(d, z)
164
165 # Take a gradient descent step
166 optim.update(loss)
167
168
169 ###### PART 4: Fabrication
170
171 #We’re done! Return the primes -
172 # and print them out physically!
173 printed_P = send_to_laser_printer(P)
174
175 #Oh, and also, make sure someone uses them...
176 fun = have_human_arrange_the_illusions(printed_P)
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B. Extended Quantitative Evaluation
B.1. Quantitative Evaluation Details
This section provides more details and additional experi-
ments regarding benchmarking the derived images of Hid-
den Overlay Illusion and Rotation Overlay Illusion.
Textual Prompts The set of image styles T s is listed as
follow where <s> stands for the subject token:

Style 1: 3d pixar style render animation of a <s>

Style 2: an award winning photograph of a <s>

Style 3: an award winning photograph of a <s>
in the deep jungle

Style 4: an award winning photograph of a <s>
in times square

The subject set T o contains subjects from PASCAL VOC
dataset [9]: aeroplane, bicycle, bird, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse, motorbike, potted
plant, sheep, sofa, train, tv/monitor.
Additional Evaluation Metrics We further extend the
evaluation introduced in the main paper by including more
metrics in each aspect:
• Controllability We take advantage of a vision language

model (VLM) LLaVA-1.5 [17, 18] to measure the sim-
ilarity between the image and the textual prompt. The
instruction sent to the VLM is

Give a single score from 0 to 10 regarding how
well the image looks like a <s>. A higher
score means the image generally looks similar
to a <s>. Only return the score.

where <s> stands for the subject token and it will substi-
tuted by the actual subject for a specific image.

• Diversity Recent research [6] suggests that the feature
from the original DINOv2 might suffer from abnormal
patches corresponding to the plain areas of the image.
Therefore, we report a new Vendi Score using the feature
from DINOv2+reg [6].

• Aesthetics Similar to Controllability, we collect an aes-
thetics score from LLaVA-1.5 using the following instruc-
tion:

Give a single score from 0 to 10 regarding how
well this image looks. A higher score means
the image generally looks more natural and
has fewer artifacts. Only return the score.

In all metrics, the vision encoder of CLIP and the back-
bone of all DINO variants is a ViT-L/14 [8]. The version of
LLaVA-1.5 we utilized is fine-tuned from Vicuna-13B.

B.2. Extended Results of Hidden Overlay Illusion
Fig. 18 presents comparative examples between the pro-
posed method and the established baseline, starting from

Figure 18. Examples of our method and the baseline, starting from
the same target image. Note how in the baseline, you can see the
sheep in the bus image and the bus in the sheep image - which is
why its independence score is lower.

the same target image. The images from the baseline are
heavily interfered with by others in the same group and the
overlay image.

Fig. 19, Fig. 20, Fig. 21 and Fig. 22 show full evalu-
ation results of the derived images from baseline and four
variants of our method. The advantages of our method com-
pared to the baseline are further supported by the new met-
rics introduced in this section, like better Controllability and
Aesthetics Score from LLaVA (see Fig. 19). Meanwhile,
LLaVA has relatively less bias on art styles and different
subjects (Fig. 20 and Fig. 22)

B.3. Results of Rotation Overlay Illusion

We further benchmark the performance of Rotation Overlay
Illusion. The evaluation follows the same protocol as the
Hidden Overlay Illusion except that each group of Rotation
Overlay Illusion images only has 4 derived images, which
require 4 textual prompts at a time and we focus on one
style:

a beautiful award-winning royalty-free full-frame
stock photo of an isolated <s>.

The result is presented in Fig. 23. Our method is signif-
icantly better than the baseline in terms of controllability
(CLIP cosine similarity) and Aesthetics Score.
Ablation on the Number of Derived Images In this
paper, by default we discuss a challenging rotation over-
lay illusion task where two prime images need to ‘encode’
four derived images. In this section, we conduct an abla-
tion on the number of derived images. We perform an ab-
lation study on the number of derived images, specifically
focusing on cases with 2 to 4 derived images. Our hypothe-
sis posits that reducing the number of derived images eases
generation constraints, potentially enhancing image quality.
This is corroborated by Fig. 24, which demonstrates im-
proved image-text alignment and aesthetic scores in simpler
tasks. Conversely, we observe a divergent trend in diver-
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Figure 19. Full evaluation on Hidden Overlay Illusion, each row
is a group of thematically-aligned figures.

Figure 20. Controllability score distributions over methods (left)
and styles (right). A, B, C, D stands for four variants of our method

sity, suggesting the interference between multiple derived
images.

Figure 21. Diversity score distributions over methods (left) and
styles (right). A, B, C, D stands for four variants of our method

Figure 22. Aesthetics score distributions over methods (left) and
styles (right). A, B, C, D stands for four variants of our method

C. Fabrication Details

All of the illusions we present are realizable in the real
world in physical form. To create a flip illusion in real life
is quite easy - just print out one of the images onto a sheet
of paper using a regular color laser printer.

The hidden overlay and rotation overlay can also be cre-
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Figure 23. Full evaluation on Rotation Overlay Illusion, each row
is a group of thematically-aligned figures.
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Figure 24. Ablation on the number of the derived images in Rota-
tion Overlay Illusion

ated with a basic color laser printer, and this is how we made
all of the photographic examples in this paper. Searching
“transparency film” online will yield many cheap transpar-
ent plastic films that are laser-printer compatible (a pack of
100 sheets sells for about $20 USD). However, after print-
ing onto these overlays, it is useful to laminate them, as the
ink can be easily scratched off. We do this with a basic ther-
mal lamination machine that can also be purchased cheaply
online.

After they have been printed, laminated, and cut appro-
priately - place the stacked transparencies over a source of
light. We use a backlight extracted from an old LCD mon-
itor for our photos in this paper. However, any backlight
will do - holding them up to a bright window with outdoor
sunlight works quite well too!

Since we model the light filtering process as multiplica-
tion, and multiplication is commutative, our modeling pro-
cess assumes that the ordering of the layers doesn’t matter.

This is true in real life as well - with sufficient backlighting,
you will get the same visual result whether transparency p1
is on the top or on the bottom. However in practice, since
some light reflects off the top transparency, it won’t be per-
fectly identical.

Additionally, we found that inserting a thin layer of water
between the transparent overlay sheets further enhances the
visual effect, and slightly reduces the need for as strong of
a backlight. We suspect this is because it eliminates the
air gap between the sheets, leading to a smaller difference
in the index of refraction. This is not necessary, but can
somewhat enhance the clarity of the illusion.

We would like to point out, however: you do not strictly
need to use transparencies to create overlay illusions! Reg-
ular paper can also work, provided you use a strong enough
backlight and use a sufficient amount of ink. We’ve in-
cluded a comparison in figure Fig. 29.
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Figure 25. Controllability of Hidden Overlay Illusion over different subjects.
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Figure 26. Diversity of Hidden Overlay Illusion over different subjects.
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Figure 27. Aesthetics of Hidden Overlay Illusion over different subjects.
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Figure 28. Independence Score of Hidden
Overlay Illusion over different subjects.
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Step 1: Print
Use a laser printer, ideally

on a transparency film

Step 2: Laminate
Optional, protects

them from scratches

Step 3: Cut Out
Be precise! It should be

easy – they’re rectangles

How to Make Overlay Illusions

Step 4: Put on Backlight
Brighter is better. Depicted below:
an upside-down MacBook screen

For comparison:
Printed on transparency

Printed on paper

Step 5: Stack Them
Place the overlays on top of each other

Let the backlight shine through them
The less light reflected off the top, the better

Step 5 (if using paper):
If you printed onto paper instead of a transparent film,

you may need to use a brighter backlight (such as a ceiling light). 
In this case, face the back of the paper towards you 

Figure 29. The overlay illusion fabrication process is depicted here. You can use paper instead of transparent films if you wish! But please
note that if you do, you may need to use a stronger backlight. The accuracy of your printer can affect the quality of the illusions as well -
if the illusion doesn’t work, check your toner levels.
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Make your own Rotation Overlay Illusions!
Print these onto a transparency film using a laser printer and cut them out!

Then, with a bright light behind them, hold the base image in place while you rotate its respective rotator image in 90° intervals
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Make your own Hidden Overlay Illusions!
Print these onto a transparency film using a laser printer and cut them out!
Then, with a bright light behind them, overlay and align all four images.
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