
Diffusion Illusions: Hiding Images in Plain Sight

Ryan Burgert Xiang Li Abe Leite Kanchana Ranasinghe Michael S. Ryoo

Stony Brook University
rburgert@cs.stonybrook.edu

Abstract

We study the problem of automatically generating im-
ages that may cause illusions when viewed in a certain
way using a frozen text-to-image diffusion model. Firstly,
we propose a formal definition of generating illusion im-
ages computationally. Then we introduce Diffusion Illu-
sions, a general pipeline designed for generating a diverse
array of illusions without tuning any parameters of the dif-
fusion network. We conduct comprehensive experiments
across multiple aspects and verify the effectiveness of our
proposed method qualitatively and quantitatively. We also
highlight the successful creation of physically fabricated
versions of our illusions. Our code and results will be re-
leased publicly. Please visit our interactive project website:
https://diffusionillusions.com

1. Introduction
An image that viewed right-side up appears to be an ordi-
nary photo of a dog, but viewed upside-down looks like a
sloth. Four images, each showing an everyday playground,
that when superimposed form a biohazard symbol. These
types of illusions have long required immense time and skill
to create, but we have developed a flexible pipeline capable
of generating appealing illusions automatically.

Generating such images is not the sole domain of play.
Illusions – that is, visual stimuli whose interpretation de-
pends on how they are arranged and viewed – have been
created and studied for centuries. While they are an appeal-
ing sort of “visual puzzle”, they also reveal much about how
humans perceive the world and about the abstract structure
of images. Even though illusions have been created and
studied for centuries, and certain types have been generated
by computers for decades, photorealistic illusions have re-
mained largely out of reach until the very recent past, and
until this point there has been no general framework for un-
derstanding and generating such illusions.
Classical Illusions: Images whose interpretation depends
on viewing angle or category bias, sometimes known as am-
biguous images, have been designed for centuries. Such

Figure 1. Diffusion Illusions are a new class of automatically gen-
erated optical illusions. The top image demonstrates our Flip illu-
sion, and the bottom one showcases four transparent images that
when stacked on top of each other and put on a backlight reveal
fifth images. Please note that these are all real photographs.

images have drawn the scholarly interest of psychologists
[3, 14] and philosophers [41] since the 1800s. Ambiguous
images have been used experimentally to understand how
category bias during perception varies as people age [22],
and families of ambiguous images, such as ambigrams [12],
are often constructed as a way of better understanding the
domains they belong to. We present some relevant exam-
ples in classical illusions.
Computationally-generated Illusions: A growing stream

1

https://diffusionillusions.com


of research has focused on computationally generating spe-
cific types of illusions. One early example is hybrid im-
ages [23]. Hybrid images are created from two images by
combining the low-frequency features of one with the high-
frequency features of the other. Viewers see the object from
the low-frequency image when viewing the hybrid image
from a distance, and see the object from the high-frequency
image when viewing up-close. While this process may be
automated, the authors note that for best results, the over-
all shapes of the low-frequency and high-frequency images
should be manually aligned.

A number of researchers have created 3-dimensional ob-
jects that are interpreted as different objects when they are
viewed from different angles. In multi-view wire art [13],
a single 3D wire may be viewed or lit from multiple an-
gles to obtain different clean line drawings; and in view-
dependent surfaces [27], a colored 3D-printed heightfield
may be viewed from different angle to obtain different color
images.

An additional type of illusion is steganography, in which
apparently normal objects may be viewed in a particular
way to uncover a hidden meaning. In The Magic Lens [25],
seemingly meaningless dots are generated such that, when
viewed through an intricate refractive lens, they will com-
prise a specified image.
Diffusion-based Image Generation: Diffusion Probabilis-
tic Models [37] resulted in rapid advances for image gener-
ation tasks, including text-to-image generation [7, 21, 31–
35, 43]. Recent works [4, 29] sample pre-trained diffusion
models without re-training to generate outputs in novel do-
mains. Score Distillation introduced in DreamFusion [29]
is the underlying technique enabling optimization of sam-
ples in any arbitrary parameter space without backpropa-
gation through the diffusion model. We utilize these tech-
niques to construct a novel framework for illusion genera-
tion. These rapid advances have led to an exploration of
suitable evaluation metrics, both quantitative and qualitative
[1, 2, 10, 15, 42], which we use to evaluate our proposed
framework.
Contemporary Work: Following recent image generation
developments, a small but growing body of non-scholarly
or unpublished work has approached the problem of gener-
ating multi-view 2D images [38] or ambigrams [36]. While
these approaches appear to yield appealing results, they are
narrowly focused on specific illusions, may require sub-
stantial cherry-picking, and have not been formally pre-
sented or published. In contrast, we present a formalized,
generic approach capable of generating variable types of il-
lusions followed by extensive evaluation (both quantitative
and qualitative) of our approach. Contemporary work in
[11] presents a formal framework for efficient (fast infer-
ence) illusion generation, but operate on a subset of our il-
lusions and do not explore generality for real-world transfer
(i.e. fabrication of illusions in real world).
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Figure 2. A brief history of illusions. Classical illusions: (A)
“Fruit Basket” (1500s) by Giuseppe Arcimboldo provides a very
early example, depicting a face when viewed in one orientation
and a fruit basket when viewed in the other. (B) When viewed di-
rectly, “Kaninchen und Ente” (1892) is ambiguous; 45◦ rotations
make it appear as a rabbit or a duck [14, 41]. (C) “My Wife and My
Mother-in-Law” (1915) by William Ely Hill may be interpreted as
showing either a young or an old woman depending on how it
is grouped [3, 22]. Computationally-generated illusions: (D) a
hybrid image which appears to be a leopard when viewed close-
up and an elephant when viewed from a distance [23]. (E) a wire
sculpture which depicts three different 2010s American politicians
when viewed from different angles [13]. Diffusion-based illu-
sions: (F) an image depicts a duck when viewed upright and a
rabbit when rotated 90◦ ccw [38]. (G) a set of computationally-
generated ambigrams reading ‘Ohio’, ‘doug’, ‘cloud’, ‘yeah’, and
‘python’ [36].

Contributions: In this work, we make three main contri-
butions: 1) we provide the first formal definition for the
problem of generating illusions; 2) we present Diffusion Il-
lusions, a flexible tool for generating multiple types of illu-
sions; and 3) we outline an automated framework for assess-
ing the quality of computer-generated illusions and conduct
comprehensive experiments in multiple aspects.

2. Problem Statement
We define an illusion as the situation that occurs when a set
of physical images called prime images are viewed or ar-
ranged in multiple ways, with each arrangement yielding a
unique perceived image, referred to as a derived image, that
represents a specific object or scene. Most of the existing
illusions we have discussed consist of a single 2D image
or 3D object as a prime image, with the arrangements be-
ing simple translations and rotations of the prime image in
2D or 3D space. In the simplest case where a 2D drawing
is rotated to yield different perceived objects, the arrange-
ment operations may be modeled as simple rotations. The
near and distant views composing the Hybrid Images illu-
sion [23], on the other hand, might be best modeled by high-
pass and low-pass spatial frequency filters.

In an effort to find a fully general definition of illusions
and leverage the new possibilities afforded by text-to-image

2



Fourier Feature Networks

p1

pn

Prime Images

a1

a2

am

Arrangement
Operations

d1

d2

dm

Derived Images

Score
Distillation

Loss

or

Dream
Target
Loss

Diffusion
Model
Signal

t1

t2

tm

Text Prompts

Backpropagation
Figure 3. Architecture overview. Trainable components shown in blue, intermediate variables in red, non-trainable functions in white,
and inputs in green. A diffusion network provides two different loss signals pulling the derived images towards the text prompts. Only
a single loss signal, either Score Distillation Loss or Dream Target Loss, is computed at each training step. Gradients on the derived
images are backpropagated through the arrangement operations and prime images to the parameters of the Fourier feature networks. No
backpropagation occurs through the diffusion network.

models, we do not limit ourselves to a single prime image.
We additionally consider situations where multiple compos-
able prime images, for instance, stencils or light-filtering
transparencies, may be arranged in different ways to yield
different derived images. In the particular case of compos-
ing two light-filtering transparencies, the arrangement op-
eration may be modeled as a rotation of each prime image
followed by a multiply operation to model the light-filtering
step.

Formally, the illusion process is described as follows.
Consider some prime image space P representing phys-
ically realizable visual stimuli, and some derived image
space D representing a human view of a scene. (Practi-
cally, we use 2D RGB images to represent both spaces.)
Then, an illusion consists of a tuple of n prime images
{p1, p2, . . . , pn}, pi ∈ P and a tuple of m arrangement op-
erations A = {a1, a2, . . . , am}, aj : Pn → D. Each aj
represents an arrangement of all of the prime images to ob-
tain a single derived image dj , such that the illusion yields a
tuple of m derived images {d1, d2, . . . , dm}, dj ∈ D. (This
articulation may be easily generalized to heterogeneous il-
lusions, such as a wire frame viewed through a stencil; in
this case each prime image pi belongs to its own prime im-
age space Pi.)

This framing is complementary to the existing literature
on “ambiguous images”. The illusion process is not in-
tended to cover images which have multiple interpretations
when viewed in exactly the same way, though it may be pos-
sible to articulate a perceptual bias towards a certain cate-
gory as a type of arrangement. However, the illusion pro-
cess otherwise broadens the category of ambiguous images
to include situations involving multiple composed images.
We propose multiple examples below that are to our knowl-
edge wholly novel.

This definition allows one to separate the process of cre-
ating an illusion into two steps: first, selecting a prime im-
age domain and defining and modeling the arrangement op-
eration; and second, searching the prime image domain for

images that yield the desired derived images when arranged
in each way. While the first step requires creativity and ex-
perimentation, the second step is sufficiently concrete that
it may be practically automated, as we discuss in Sec. 3.

3. Method

We introduce Diffusion Illusions, a flexible tool for generat-
ing multiple types of visual illusions that can be styled with
unprecedented control (e.g. photorealistic images, artistic
styles, or even arbitrary information such as QR-codes). At
a high level, the Diffusion Illusions pipeline consists of a
set of parameterized prime images (P), a set of specific ar-
rangement processes (A, that derive images from primes),
and a frozen text-to-image diffusion model (F). We refer to
the outputs of the arrangement processes as derived images
(D). The diffusion model is used to provide a signal using
one of two mechanisms (Score Distillation Loss or Dream
Target Loss, which will be covered in Sec. 3.4) to suitably
optimize the prime images, which in turn modifies the de-
rived images. The whole pipeline is demonstrated in Fig. 3.

3.1. Prime Images

As described in Sec. 2, prime images are the physical im-
ages we eventually want to generate, that will trigger an
illusion when viewed or arranged in multiple ways.

In our framework, prime images are represented as
512 × 512 dimensional RGB images, meaning that P ≃
R(512,512,3). Instead of direct pixel-space image represen-
tation, we use Fourier Features Networks (FFN) [39] to rep-
resent prime images in parametric form. For each prime im-
age, the learnable weights of a single MLP network acts as
its representation. The MLP network weights map image-
space coordinates to corresponding RGB values similar to
[5], forming an implicit image representation. We further
discuss the advantages of FFN in Sec. 4.3.
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3.2. Arrangement Processes
The purpose of arrangement processes, A, is to operate on
a set of prime images (including single element sets) and
produce unique outputs, the derived images. For a single
arrangement process ai,

di = ai(P ) (1)

each unique sequence of prime images produces a distinct
derived image, di. Each operation ai ∈ A should possess
three properties: 1) For the same set of inputs the operation
should always provide the same output (fixed operation).
2) ai should also be differentiable, i.e. possibility to ex-
plicitly calculate gradients propagation from output to input
through the operation. 3) ai should also be realizable in the
real world: some series of physical actions on prime images
(in physical form) should result in the same derived image.
To summarize, an arrangement process must be fixed, dif-
ferentiable, and realizable in the real world.

3.3. Specific Illusions
We select three illusion categories for further study:
• Flip Illusion is one of the most classical types of illu-

sions. We define this illusion as consisting of a single 2D
prime image, which is interpreted as some object when
viewed upright (derived image 1) and as another object
when viewed upside-down (derived image 2).

• Rotation Overlay Illusion is a minimal type of illusion
involving multiple prime images. This illusion is based
on two square light-filtering 2D prime images, one base
and one rotator. The rotator image is rotated with 0, 90,
180, and 270 degree angles and superimposed on the base
image; each rotation yields a derived image interpreted as
a different object.

• Hidden Overlay Illusion is introduced to push the
boundaries of the prime-to-derived relationship, in which
four light-filtering prime images, each of which is inter-
pretable on its own, maybe merged to obtain a fifth hidden
image. Here the modeled view process for the first four
derived images is simply the identity function; the view
process for the fifth is the product of the four prime im-
ages. The Hidden Overlay Illusion demonstrated in real
life. Please note that these are all real photographs.

We select these illusion styles to cover varying set cardi-
nalities for prime images and arrangement processes. The
arrangement process relevant to each illusion is presented
in Tab. 1.

3.4. Learning Process
Having selected three diverse illusion styles, we next dis-
cuss the process for learning optimal prime images. Given
fully-differentiable operations (also realizable in the physi-
cal world) that arrange a set of prime images to produce a
derived image, we leverage two methods to provide suitable

p1		:	Base p2		:	Rotator

0	° →		d1
t1	=	“Hatsune	Miku”

90	° →		d2
t2	=	“Emma	Watson”

180	° →		d3
t3	=	“Winter	Woman”

270	° →		d4
t4	=	“Elf	Woman”

45	°

135	°225	°

315	°

a4

a1

a3

a2

Figure 4. This figure shows the rotation overlay illusion arrange-
ment process. Please note that these are all real photographs. The
“rotator” image is placed on a “base” image over a backlight, both
printed out onto transparent sheets. Then, as the rotator spins, we
derive four different images.

Illusion n m a

Flip 1 2
a1(p) = p1

a2(p) = rot(p2, 180)

Rotation Overlay 2 4 aj(p) = p1 ∗ rot(p2, 90j)

Hidden Overlay 4 5
aj(p) = pj , j ≤ 4

a5(p) = p1 ∗ p2 ∗ p3 ∗ p4

Table 1. This table describes our mathematical models of the Flip,
Rotation Overlay, and Hidden Overlay illusions, describing the
number of prime images n, the number of derived images m, and
the arrangement operator a mapping from prime image space Pn

to derived image space Dm. The arrangements in the Flip illusion
are simply the identity and a 180 degree rotation. The arrangement
operations in the Overlay illusions use a multiplication blend op-
eration to model shining light through multiple transparencies; the
result is multiplied by a constant and normalized using tanh to
avoid losing dynamic range.

alignment signals to the derived images, that in turn would
update the prime images. First, we use Score Distillation
Loss [29], a high-fidelity but expensive ithm that applies a
conditional denoising model to the input at every image up-
date step. Second, we introduce the complementary Dream
Target Loss, a faster technique that pulls the derived images
towards periodically updated target images.

For each derived image (di), we introduce a target (ti)
that describes in natural language the expected visual ap-
pearance of its final form. This natural language descrip-
tion, ti is used
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Figure 5. We depict the dream-target loss above. It is an iterative
process, refining derived images using SDEdit to create target im-
ages, which the derived images are then regressed to with gradient
descent. Note how the derived images look more like the targets
after approaching them than before, such as the man’s green face.

Score Distillation Loss: is a widely-used technique to
align images with external conditioning such as textual
prompts. In essence, Score Distillation Loss randomly se-
lects a timestep τ of the denoising process, adds noise η
proportionate to the timestep τ to the derived image x, and
applies the denoising process to x + η to obtain an esti-
mated x0 and estimated noise η̂. The difference between
the estimated noise η̂ and actual noise η provides a sig-
nal for the discrepancy between the derived image and the
target category for the derived image. This difference is
normalized by τ and then provided as a gradient to the de-
rived image and backpropagated through the view process
to the prime image. Importantly, this process does not re-
quire any backpropagation through the diffusion model. In
summary, we may treat score distillation as an operation
LSD(Image,Text) that can provide gradients to optimize the
image such that iterative updates to the image converge its
appearance towards the paired text caption.

Li = LSD(ti, di) (2)

Minimizing this loss in Eq. (2) and propagating gradi-
ents provides a minimal framework with strong results. We
next explore how compute efficiency of this setup can be
improved.

3.4.1 Dream Target Loss

Our novel Dream Target Loss is an optimized version of
the Score Distillation Loss for circumstances where it is not
trivial for input image(s) to follow their gradients. In the
situation where the gradients from multiple derived images
are competing to influence the prime images, it is inefficient

to apply a full diffusion model at every iteration while this
competition is being resolved.

Instead, Dream Target Loss periodically applies a condi-
tional image-to-image process (G) to obtain a target image
for each derived image, and then gradually pulls each de-
rived image towards its target image using a combination
of the structural image similarity loss (LSSIM ) and a pix-
elwise mean squared error loss (L2). In practice, we imple-
ment G using SDEdit [19] (please see appendix for details).
We define new image targets as G(ti) for each derived im-
age using the same textual targets. Therein, we obtain a
joint loss,

Li = LSSIM(zi, di) + L2(zi, di),where zi = G(ti, di) (3)

Minimizing this loss allows us to similarly learn optimal
prime images pi resulting in derived images aligned to each
of our target concepts. An additional feature of the Dream
Target Loss relative to the SD variant is that it tends to in-
troduce less noise. We illustrate this in Fig. 5.

Our final loss is an average across all per derived image
loss terms, Li to obtain,

L =
∑

wiLi (4)

where the loss terms are weighted by importance values
w1...m. By default, all wi = 1 except in the hidden overlay
illusion where the hidden image is prioritized via w5 = 3.

Note that in both variants of losses, we propagate gradi-
ents all the way to the prime images, updating their para-
metric representing (i.e. the weights of the MLP Fourier
Feature Networks).

3.4.2 Fabrication

The flip illusions are trivial to manufacture in real life and
need only a printer. The hidden overlay and rotation overlay
illusions are created printing their prime images on over-
head display sheets on a color laser printer, before being
laminated to protect them from scratches. It’s a really sim-
ple process! With a strong enough backlight, the hidden
overlays and rotation overlay illusions can be performed on
regular pieces of paper as well.

4. Experiments

4.1. Qualitative Evaluation

We showcase many outputs of our Diffusion Illusions. Flip
Illusions are shown in Sec. 4.1, Hidden Overlay Illusions
are shown in Fig. 7, and Rotation Overlay Illusions are
shown in Fig. 8.

Please see the appendix for more.
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Flip Illusions
p1:	Girl	in	Dress

p1:	Dog

p1:	Bunny	in	Jacket

p1:	Dog

p1:	Giraffe

p1:	Boat	at Sea

d2:Boat	at	Sea

d2:	Penguin

d2:	Elephant

d2:	Bunny	in	Jacket

d2:	Sloth

d2:	Girl	in	Dress

Figure 6. Flip Illusion Examples: Please zoom in! Please view
these images upside-down as well as right-side-up to see two dif-
ferent subjects. Note: In this illusion, d1 = p1

4.2. Quantitative Evaluation

In this section, we quantitatively benchmark the Hidden
Overlay Illusion generated by the variants of Diffusion Il-
lusion in multiple aspects and demonstrate the generaliza-
tion ability and robustness of the proposed framework.
Image Generation Protocol We design a pipeline that
constructs diverse textual prompts randomly and automat-
ically. The pipeline relies on two sets of textual prompts.
The first set T s is of sentences where each sentence de-
scribes a unique art style of an image and contains one sub-
ject token representing the potential subject of the sentence.
The second set T o is of different subjects like ‘dog’, ‘cat’,
‘car’, and so on. When generating images with a specific
style ts ∈ T s, we uniformly sample five unique subjects
toi where i ∈ {1, . . . , 5} from T o. Then we substitute the
subject token in ts with toi to construct the textual prompt
ti. Finally, t1, . . . , t4 are used to generate the prime images
respectively, and t5 is used to generate the overlay image.

For a full evaluation, the whole pipeline is repeated for N
times per style ts to generate N groups of illusion images.
In practice, we set |T s| = 4, To is the set of all object classes
in PASCAL VOC [9] (|T o| = 20), and N = 64. Please
refer to the Appendix for the complete list of subjects and
styles.
Evaluation Metrics Inspired by recent works on diffu-
sion model evaluation [16, 42], we measure the following
properties of the derived images:
• Controllability how well the generated images align with

the textual prompts. For each generated image and its
corresponding textual prompt, we measure the average
cosine similarity between the image embedding and the
text embedding, extracted from a pretrained CLIP [30]
model.

• Diversity the variety of generated images conditioned on
the same prompt. For images generated by the same tex-
tual prompt, we calculate two Venti scores [10] indepen-

d5p1
Hidden Overlay Illusions
p2 p3 p4

Giraffe	SketchDog	SketchPenguin	SketchCow	Sketch Cat	Sketch

Cat	in	BoxLipstickFrogHatsune	Miku Darth	Vader

The	MoonScifi PlanetsSpaceshipAstronaut Nyan	Cat

Cat	in	BoxBeachPenguin	SketchCow	Sketch Frog

Hatsune	MikuHatsune	MikuHatsune	MikuHatsune	Miku Jean	Luc	Picard

Horse	SketchPig	SketchGoat	SketchMoose	Sketch Chicken	Sketch

PlaygroundPlaygroundPlaygroundPlayground One	Ring	Poem

Anime CatAnime	DogAnime	GirlAnime	Boy Pentagram

Figure 7. Hidden Overlay Examples: Please zoom in! On the
left are the four prime images p1, p2, p3, p4 and on the right is the
derived image d5 = p1 · p2 · p3 · p4, which simulates overlaying
them over a backlight. Note: In this illusion, d1...4 = p1...4

dently based on two visual embeddings: the [CLS] em-
beddings of DINOv2 [24] and CLIP visual embeddings
(see Appendix).

• Aesthetics the assessment of an image’s visual appeal and
artistic quality. For each image, we utilize AVA LAION-
Aesthetics Predictor V2, which is pretrained on AVA [20]
dataset, to estimate an aesthetics score range from 0 to 10.
In addition, we study a new property Independence

specifically for the illusion scenario. Intuitively, each im-
age is expected to stick to its corresponding textual prompt
while not being distracted by other textual prompts in the
same group. Such property is named as Independence,
which is different from Controllability because indepen-
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p2 :	Rotatorp1		:	Base d4d3d2d1

Rotation Overlay Illusions

Emma	WatsonWinter	WomanElf	WomanHatsune	Miku

LipstickLaser	DinosaurEgyptian	PyramidsHatsune	Miku

Jean	Luc	PicardFrogWinged	BullHatsune	Miku

MarioDarth	VaderPikachuThomas	the	Train

Cat	in	BoxHatsune	MikuFrogGirl	In	Dress

VolcanoPorche CarPalm	Tree	at	BeachWalter	White

Figure 8. Rotation Overlay Examples: Please zoom in! On
the left are the two prime images p0, p1 and on the right are the
four derived images d5 that obtained by taking the product of the
primes, simulation of them overlaid on a backlight.

dence is designed to reflect not only the similarity between
an image and its corresponding textual prompt but also the
dissimilarity between the image and the textual prompts for
other images. In other words, this property focuses on how
well the prime images can ‘hide’ the overlay image or how
challenging it will be for people to infer the overlay image
from a single prime image and vice versa.
Independence Score: Therefore, we propose a new metric
Independence Score to reflect such property. Consider a set
of m derived images, denoted as {d1, d2, . . . , dm}, along
with their corresponding textual prompts {t1, t2, . . . , tm}.
Initially, we extract the visual embeddings vi = fv(di) and
text embeddings ej = ft(tj) using the visual encoder fv
and the text encoder ft from a pretrained CLIP [30] model
respectively. Subsequently, we compute the cosine similar-
ity kij = CosineSimilarity(vi, ej) between any visual and
text embeddings vi and ej . The results are assembled into a
matrix K, where kij is put in the i-th row and j-th column.
The Independence Score SIS is calculated by the following
equations.

K0 = Softmax(K/τ, 0) (5)
K1 = Softmax(K/τ, 1) (6)
SIS := min(diag(K0) ∪ diag(K1)) (7)

where τ = 0.05 is a temperature constant, Softmax(·, l)

stands for softmax operation along l-th dimension and
diag(·) presents a set of the diagonal elements of (·). SIS

is designed to become higher when all images di align best
with their corresponding textual prompts compared with
other textual prompts.
Methods The baseline method of our experiments is a
vanilla SDXL generating target images with corresponding
textual prompts independently for one step. We benchmark
four variants of our methods named A, B, C, and D. Method
C is our default method, and involves 500 steps of score dis-
tillation loss followed by 8 steps of dream target loss, and
applies relative weights [1,1,1,1,3] respectively - which pri-
oritizes the quality derived hidden image over its constituent
primes. In addition, Method A uses Stable Diffusion 1.5 in-
stead of SDXL, which is used by all other methods. Method
C uses equal weights for all derived images, using weights
[1,1,1,1,1] respectively. Lastly, method D uses 4000 steps
of score distillation loss followed by 1 step of dream target
loss for smoothness, to evaluate the ability of score distilla-
tion loss alone in this task. For fairness, all methods were
constrained to run in a 15-minute time window.
Results For all metrics, we report the score distributions
achieved by our default method and the baseline in Fig. 9.

Figure 9. Comparison of multiple score distributions

Our method significantly outperforms the baseline in all
metrics except the Vendi Score, which is expected because,
for our method, there are more constraints from the derived
images applied during the generation process.

The score distributions of four variants of our method are
presented in Fig. 10. Each row of Fig. 10 presents two met-
rics. The subfigures on the left-hand side show the overall
performance of a specific method. In general, all methods
perform similarly well in terms of Controllability (Cosine
Similarity) and Diversity (Vendi Score) (the first two rows
in Fig. 10). Method C shows significant advantages in Aes-
thetics (Aesthetics Score) and Methods C and D achieve rel-
atively higher Independence Score.

A detailed look at different art styles is presented on the
right-hand side of each row of Fig. 10, where different met-
rics respond diversely to different art styles. Controllability
(Cosine Similarity) prefers Style 3 and Style 4 while the Di-
versity (Vendi Score) prefers Style 2. The Aesthetics Score
and Independence Score are generally robust to the differ-
ent styles. However, the Aesthetics Score prefers Style 4
slightly more than Style 1.

In conclusion, the prompts used are far more important
than the chosen implementation. There is no clear one-
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Figure 10. Score distributions over methods (left) and styles
(right). A, B, C, D stands for four variants of our method

size-fits-all method indicated by our quantitative evalua-
tions, however, we observe that depending on the art styles
and subjects used, a different method will be optimal. One
should carefully pick up a method when generating illusions
in a specific art style. A further study on subjects is avail-
able in the Appendix.

4.3. Discussions
In this section, we discuss several observations that may in-
spire future investigation.
Q1: Can Diffusion Illusion yield better images when run-
ning for a longer time?
Yes. Fig. 11 presents the trend of Controllability (Cosine
Similarity) and Aesthetics (Aesthetics Score) as the images
used in Sec. 4.2 are getting optimized. The term ‘relative
time’ is employed to denote the progression of wall-clock
time during the optimization process. A relative time value
of 0 means the beginning of optimization, whereas a value
of 1 marks its conclusion. Fig. 11 reveals a notable trend:
there is a consistent increase in metrics as the optimization
process advances.

Figure 11. CLIP Cosine Similarity (left) and Aesthetics Score
(right) increase when optimizing for a longer time.

Q2: Is Independence Score a qualitatively valid metric?
Generally yes. Fig. 12 shows four illusions randomly se-
lected with diverse independence scores. For each row, the
subject of each image is listed above, and the method, style,
and independence scores are listed on the left-hand side.
The four images grouped in the middle are prime images
and they derive the overlay image on the right-hand side.
For the first two examples where the independence score
is relatively high, each image aligns with its corresponding

textual prompt. However, for the third example, the overlay
image is not closely related to the subject ‘sofa’, resulting
in a lower independence score. Furthermore, in the last ex-
ample of Fig. 12, the overlay image visually biases more
towards ‘cow’ instead of ‘bottle’, leading to the lowest in-
dependence score.

Figure 12. Examples with diverse independence scores

Q3: What are the reasons to use Fourier Features Network?
Earlier experiments optimizing prime images directly in
pixel space resulted in information being encoded at very
high frequencies and requiring pixel-perfect alignment to
generate the intended derived images (see Fig. 13). While
the result was pleasing when viewed digitally, it was im-
practical for real-world illusions. Motivated by previous ar-
guments [4, 5], we elect to use Fourier Features Network
[39] based parametric image representations.

Figure 13. A Hidden Overlay image with prime images optimized
directly in pixel space. While high-frequency encoding of the hid-
den image results in less perceivable interference in each individ-
ual image, it results in a brittle illusion that is disrupted without
pixel-perfect printing and alignment.

5. Conclusion
In this paper, we establish the formal definition of the prob-
lem of generating illusions and introduce Diffusion Illu-
sions, a versatile pipeline designed for the generation of a
diverse array of illusions. Complemented by comprehen-
sive experiments conducted across multiple facets, we ver-
ify the effectiveness of our proposed method qualitatively
and quantitatively. Furthermore, as noted, the accuracy of
the Rotation Overlay or Hidden Overlay illusions (Tab. 1)
might vary due to physical imperfections in the printing pro-
cess (refer to Appendix for details) - leaving room for fur-
ther exploration. Other areas to explore include more types
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of illusion generation and creative ways to take advantage
of diffusion models.

Limitations: The main limitation of our framework is the
relatively high inference time required for generating illu-
sions. While our framework improves over plain score-
distillation in terms of inference time, we are still slow.
Improving speed of illusion generation frameworks such as
ours presents an interesting future direction. We note that
contemporary work has already explored ways to minimize
this inference time. Other limitations include biases con-
tained in our models (discussed in detail under ethics state-
ment).

Reproducibility Statement Our work builds off open-
source models whose pre-trained weights are publicly avail-
able. Our framework simpy performs inference time opti-
mizations to generate illusions. In our paper, we detail all
specifics of our implementation (including PyTorch style
pseudo-code) necessary to generate such illusions. Our
code (and all material necessary to replicate results in pa-
per) will be released publicly.

Ethics Statement: A main ethical concern for any genera-
tive art model is that it will reduce the demand for human
artists in its domain. Generating optical illusion artwork is
a very difficult artistic task, and there are few artists that at-
tempt it. Thus, the genre of illusions is currently relatively
small and there is limited demand for illusions at present.
Diffusion Illusions makes the generation of optical illusions
accessible to the general public, making illusions more ac-
cessible to the layperson. We believe that, if anything, Dif-
fusion Illusions and related works are likely to increase in-
terest in illusions and the demand for human-created illu-
sions as a result. Secondly, our experiments utilize Sta-
ble Diffusion 1.5 and Stable Diffusion-XL models, and
thus our reference implementation of the Diffusion Illusions
pipeline will replicate any biases contained within these
models. These models are trained on the LAION-2B(en)
and LAION-5B datasets, and may over-represent English-
language or Western content. The Stable Diffusion 1.5 and
Stable Diffusion-XL models are intended for research pur-
poses only, and thus our reference implementation should
also be used exclusively for research and informative pur-
poses. Some recent models, including DeepFloyd, are li-
censed for limited production use and our pipeline easily
generalizes to them; however, they have higher system re-
quirements.

Contributions: RB led the project, conceived the prime
image / derived image illusion relationship, invented the
classes of hidden and rotation overlay illusions, and de-
signed & implemented the Diffusion Illusions pipeline.
XL designed and performed all quantitative evaluation ex-

periments. AL formalized and wrote the Illusion prob-
lem statement and contributed to paper writing. KR dis-
cussed multiple aspects of the project, supported designing
a prior framework (Peekaboo) important for building our
setup, and contributed to paper writing. MR supervised the
project, advised on research direction, and discussed all as-
pects of the project.
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Diffusion Illusions: Hiding Images in Plain Sight

Supplementary Material

Figure 14. Please visit https://diffusionillusion.github.io/

Figure 15. Hidden Overlay Illusion: Photographs of different
prime images as we overlay them in real life.

A. More Examples

We demonstrate again how to use the Hidden Overlay Illu-
sion in Fig. 15.

We kindly ask the reader to check our website at
https://diffusionillusion.github.io/ for
more examples.

B. Implementation Details

In this section, we outline our algorithm using python-style
pseudo-code.

B.1. Brightness Constant
In the actual implementation, you’ll see we multiply our
derived overlay images by a scalar “brightness constant” k,
that is chosen based on the type of illusion. This constant is
visible in the given pseudocode - please see how it is used
there. This is because in real life, when viewing the hidden
overlay and rotating overlay illusions, the backlight can be
arbitrarily bright. Without this term, the derived images ob-
tained from overlaying other images would necessarily be
darker than their prime images, because images have values
between 0 and 1, and the product between any two numbers
between 0 and 1 are guaranteed to be 1 or less.

Because the hidden character illusion deals with 4 over-
lays, it benefits from a higher brightness constant than the
rotation overlay illusion (k = 3 vs k = 2). The brightness
constant k is not applicable for the flip illusion, as it does
not deal with overlay transparencies.

B.2. Static Targets
When creating an illusion, usually text prompts are used
for all values of T . However, it is possible to specify a
fixed image target by setting T as an image instead. This
allows us to hide specific images such as QR codes, nyan
cat, pentagrams, or even entire segments of text (see Fig. 7).
Instead of applying score distillation loss for example, we
regress torwards that given image. Please see the below
pseudocode for an exact implementation.

B.3. Libraries
We use SDXL as our latent diffusion model [28]. Our
SDEdit implementation of SDXL comes from [40], us-
ing PyTorch [26]. Our implementation of fourier feature
networks is directly adapted from the TRITON [5], using
the default parameters for their Neural Neural Textures.
Our implementation of Score Distillation Loss comes from
Peekaboo [4].

B.4. Pseudocode
In this subsection we show python-like pseudocode that out-
lines the exact process of creating the algorithm.

1
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1 # _ ___ _ _ __ ___ _
2 # | \ | |_ |_ | | (_ | / \ |\ |
3 # |_/ _|_ | | |_| __) _|_ \_/ | \|
4 # ___ __ ___ _ __
5 # | | | | | (_ | / \ |\ | (_
6 # _|_ |_ |_ |_| __) _|_ \_/ | \| __)
7 #
8 #
9 # _ __ _ _ _

10 # |_) (_ |_ | | | \ / \
11 # | __) |_ |_| |_/ \_/
12 # _ _ _ _
13 # / / \ | \ |_
14 # \_ \_/ |_/ |_
15
16
17 ###### PART 1: Initialization
18 if ILLUSION_TYPE==’FLIP’:
19 n = 1 #Number of Prime images
20 m = 2 #Number of Derived images
21 A = [
22 #A stands for Arrangements
23 lambda P: P[0],
24 lambda P: P[0].rot180(),
25 ]
26 W = [1, 1] # Importance of each derived image
27 T = [’Dog’, ’Sloth’]
28
29 if ILLUSION_TYPE==’ROTATE’:
30 n = 2 #Two Prime Images: Base, Rotator
31 m = 4 #Four Derived Images
32 k = 2 #The backlight brightness constant
33 A = [
34 lambda P: k*P[0]*P[1],
35 lambda P: k*P[0]*P[1].rot90(),
36 lambda P: k*P[0]*P[1].rot180(),
37 lambda P: k*P[0]*P[1].rot270(),
38 ]
39 W = [1, 1, 1, 1]
40 T = [’Dog’, ’Cat’, ’Man’, ’Woman’]
41
42 if ILLUSION_TYPE==’HIDDEN’:
43 n = 4 #Two Prime Images: A, B, C, D
44 m = 5 #Four Derived Images:
45 # A, B, C, D, Hidden
46 k = 3 #The backlight brightness constant
47 A = [
48 lambda P: P[0],
49 lambda P: P[1],
50 lambda P: P[2],
51 lambda P: P[3],
52 lambda P: k*P[0]*P[1]*P[2]*P[3],
53 ]
54 W = [1, 1, 1, 1, 3] # Prioritize the hidden image
55 T = [’Dog’, ’Penguin’, ’Giraffe’, ’Cow’, ’Cat’]
56 ## OR, to use a QR code or another specific image...
57 T = [’Dog’, ’Penguin’, ’Giraffe’, ’Cow’,
58 load_image(’qr_code.png’) ]
59
60 assert len(T) == len(A) == len(W) == m
61
62 # Initialize all prime images
63 P = [RgbFourierFeatureNetwork(resolution=(512,512))
64 for _ in range(n)]
65
66 # Initialize our latent diffusion model
67 F = StableDiffusion()
68
69 # We optimize the prime images via gradient descent.
70 optim = SGD(P.parameters())
71
72
73 ###### PART 2: Helper Functions
74 def score_distill_loss(image, prompt):
75 #Same loss proposed in DreamFusion -
76 # but with a latent diffusion model
77 image_latent = F.encode_image(image)
78 timestep = random_int(0, F.max_timestep)
79 noise = F.get_noise(timestep)
80 noised_latent = F.add_noise(
81 image_latent, noise, timestep
82 )
83 with torch.no_grad():
84 text_embed = F.clip.embed(prompt)
85 pred_noise = F.unet(
86 noised_latent, text_embed, timestep
87 )
88 return abs(noise - pred_noise).sum()

89
90 def image_similarity(a, b):
91 #Our image similarity metric
92 return SSIM(a,b) - MSE(a,b)
93
94 def img2img(image, prompt, strength):
95 #Based on SDEdit - simplified here
96 #When strength=1, the entire image is replaced
97 #When strength=0, nothing is changed
98 image_latent = F.encode_image(image)
99 timestep = int(strength * F.max_timestep)

100 noise = F.get_noise(timestep)
101 noised_latent = F.add_noise(
102 image_latent, noise, timestep
103 )
104
105 #Perform diffusion as normal, but starting from
106 #our noised_latent instead of pure noise
107 diffused_latent = F.text_to_image(
108 prompt,
109 initial_latent=noised_latent,
110 initial_timestep=timestep,
111 )
112
113 new_image = F.decode_image(diffused_latent)
114 return new_image
115
116
117 ###### PART 3: Optimization
118
119 #Phase 1: Score Distillation Loss
120 for iteration in range(10000):
121 loss = 0
122 for a,t,w in zip(A,T,W):
123 #Derived image d is arrangement of prime images
124 d = a(P)
125 if isinstance(t, str):
126 loss += w * score_distill_loss(d, t)
127 elif is_image(t):
128 # For hiding custom images such as QR codes
129 loss -= w * image_similarity(d, t)
130 optim.update(loss) # Take a gradient descent step
131
132 #Phase 2: Dream-Target Loss
133
134 #Start from strength = .90 instead of 1
135 # in order to use the results from Phase 1
136 schedule = [.90, .89, .88 ... .03, .02, .01]
137
138 for strength in schedule:
139 # Define the image translation function
140 G = lambda text,image: img2img(text,image,strength)
141
142 # Step 1: Set our Dream-Targets
143 Z = []
144 for a, t in zip(A,T):
145 if isinstance(t, str):
146 # Tweak a derived image to get a new target
147 d = a(P)
148 z = G(t, d)
149 elif is_image(t):
150 #Use a predefined target (e.g. a QR code)
151 z = t
152 Z.append(z)
153
154 # Step 2: Approach our Dream-Targets
155 for iteration in range(1000):
156 #Optimize P so that D approaches T
157
158 loss = 0
159 for a,z,w in zip(A,Z,W):
160 d = a(P)
161 loss -= w * image_similarity(d, z)
162
163 # Take a gradient descent step
164 optim.update(loss)
165
166
167 ###### PART 4: Fabrication
168
169 #We’re done! Return the primes -
170 # and print them out physically!
171 send_to_laser_printer(P)
172
173 #Oh, and also, make sure someone uses them...
174 have_human_arrange_the_illusions()
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C. Extended Quantitative Evaluation
This section provides more details and additional experi-
ments regarding benchmarking the derived images of Hid-
den Overlay Illusion and Rotation Overlay Illusion.
Textual Prompts The set of image styles T s is listed as
follow where <s> stands for the subject token:

Style 1: 3d pixar style render animation of a <s>

Style 2: an award winning photograph of a <s>

Style 3: an award winning photograph of a <s>
in the deep jungle

Style 4: an award winning photograph of a <s>
in times square

The subject set T o contains subjects from PASCAL VOC
dataset [9]: aeroplane, bicycle, bird, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse, motorbike, potted
plant, sheep, sofa, train, tv/monitor.
Additional Evaluation Metrics We further extend the
evaluation introduced in the main paper by including more
metrics in each aspect:
• Controllability We take advantage of a vision language

model (VLM) LLaVA-1.5 [17, 18] to measure the sim-
ilarity between the image and the textual prompt. The
instruction sent to the VLM is

Give a single score from 0 to 10 regarding how
well the image looks like a <s>. A higher
score means the image generally looks similar
to a <s>. Only return the score.

where <s> stands for the subject token and it will substi-
tuted by the actual subject for a specific image.

• Diversity Recent research [6] suggests that the feature
from the original DINOv2 might suffer from abnormal
patches corresponding to the plain areas of the image.
Therefore, we report a new Vendi Score using the feature
from DINOv2+reg [6].

• Aesthetics Similar to Controllability, we collect an aes-
thetics score from LLaVA-1.5 using the following instruc-
tion:

Give a single score from 0 to 10 regarding how
well this image looks. A higher score means
the image generally looks more natural and
has fewer artifacts. Only return the score.

In all metrics, the vision encoder of CLIP and the back-
bone of all DINO variants is a ViT-Large [8] with a patch
size of 14. The version of LLaVA-1.5 we utilized is Vicuna-
13B.
Hidden Overlay Illusion Results Fig. 16 presents com-
parative examples between the proposed method and the es-
tablished baseline, starting from the same target image. The
images from the baseline are heavily interfered with by oth-
ers in the same group and the overlay image.

Figure 16. Examples of our method and the baseline, starting from
the same target image. Note how in the baseline, you can see the
sheep in the bus image and the bus in the sheep image - which is
why its independence score is lower.

Fig. 17, Fig. 18, Fig. 19 and Fig. 20 show full evalu-
ation results of the derived images from baseline and four
variants of our method. The advantages of our method com-
pared to the baseline are further supported by the new met-
rics introduced in this section, like better Controllability and
Aesthetics Score from LLaVA (see Fig. 17). Meanwhile,
LLaVA has relatively less bias on art styles and different
subjects (Fig. 18 and Fig. 20)

A detailed study over different subject is presented as
Fig. 21, Fig. 22, Fig. 23, and Fig. 24
Rotation Overlay Illusion Results We further bench-
mark the performance on Rotation Overlay Illusion. The
evaluation follows the same protocol as the Hidden Over-
lay Illusion except that each group of Rotation Overlay Il-
lusion images only has 4 derived images, which require 4
textual prompts at a time. The result is presented in Fig. 25.
Our method is significantly better than the baseline in terms
of controllability (CLIP cosine similarity) and Aesthetics
Score from LLaVA and our Aesthetics Score (AVA) is com-
parable to the baseline.

D. Limitation
As briefly discussed in the conclusion section of the main
paper, the effectiveness of visual illusion in the real world
may vary a lot due to the errors introduced in the printing
process. Fig. 26 and Fig. 27 present the effect of the color
shifts when printing the images.
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Figure 17. Full evaluation on Hidden Overlay Illusion, each row
is a group of thematically-aligned figures.

Figure 18. Controllability score distributions over methods (left)
and styles (right). A, B, C, D stands for four variants of our method

Figure 19. Diversity score distributions over methods (left) and
styles (right). A, B, C, D stands for four variants of our method

Figure 20. Aesthetics score distributions over methods (left) and
styles (right). A, B, C, D stands for four variants of our method
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Figure 21. Controllability of Hidden Overlay Illusion over different subjects.
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Figure 22. Diversity of Hidden Overlay Illusion over different subjects.
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Figure 23. Aesthetics of Hidden Overlay Illusion over different subjects.
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Figure 24. Independence Score of Hidden Overlay Illusion over
different subjects.

Figure 25. Evaluation on Rotation Overlay Illusion

Figure 26. The colors shift after printing out Rotation Overlay
Illusion images. First row: digital copy of the images and the
overlay simulation. Second row: real-world photos of the printed
images.

Figure 27. The colors shift after printing out Hidden Overlay Illu-
sion images. First row: digital copy of the images and the overlay
simulation. Second row: real-world photos of the printed images.
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Make your own Rotation Overlay Illusions!
Print these onto a transparency film using a laser printer and cut them out!

Then, with a bright light behind them, hold the base image in place while you rotate its respective rotator image in 90° intervals
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Hidden Overlay Illusion #1

Prime Image 2/4

Make your own Hidden Overlay Illusions!
Print these onto a transparency film using a laser printer and cut them out!
Then, with a bright light behind them, overlay and align all four images.
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